
$14.95

ASSEMBLY LANGUAGE

FOR KIDS

COMMODORE 64

by

WILLIAM B. SANDERS

ASSEMBLY LANGUAGE

FOR KIDS:

COMMODORE 64

by William B. Sanders, Ph.D.

San Diego State University

[Ilicrocomscribe
^■■11^" Literote Microcomputer Documentation

8982 Stimson Court

San Diego, California 92129

619/484-3884 or 619/578-4588

Library of Congress Cataloging in Publication Data

Sanders, William B.

Assembly Language For Kids: Commodore 64

Includes index

1. Commodore 64 Computer

2. Assembly Language (Computer program language)

I. Sanders, William B., 1944-

II. Title: Assembly Language for Kids:

Commodore 64

ISBN 0-931145-00-7

© 1984 by William B. Sanders

San Diego, California

Manufactured in the United States of America

All rights reserved. No part of this book may be reproduced by

any means without the written permission of the author and

publisher.

Cover design by Dyna Pac

Typesetting by GD Enterprises

ASSEMBLY LANGUAGE FOR KIDS :

COMMODORE 64

TABLE OF CONTENTS

PREFACE VI

CHAPTER 1: INTRODUCTION 1

What This Book is About , 1

Who This Book is For 2

WhyUse Assembly Language 3

Whatis An Assembler? 5

Machine and Assembly Language 6

Assemblers Covered in this Book 8

The Commodore 64 Macro Assembler

Development System 8

Merlin Assembler 8

The Kids' Assembler (Included in the book) 9

Other Assemblers not Covered 9

BASIC and Assembly Language 10

Machine Subroutines from BASIC 13

SettingUp 17

CHAPTER2: USINGANASSEMBLER 21

ASSEMBLERS INGENERAL 21

The Standard Parts ofAn Assembler 23

I.

Standard Editor/Assembler Format 27

USINGTHEKIDS'ASSEMBLER 29

Creating and Saving Programs 43

Special Conventions in Opcodes 47

Loading and Executing Programs , 48

Some Examples 50

CHAPTER 3: THEMERLIN 64ASSEMBLER 53

Using the Editor/Assembler 53

Loading and Running Programs 67

THESOURCEROR 68

MERLIN'S MONITOR 70

Some Examples 70

CHAPTER 4: THE COMMODORE 64 MACRO ASSEMBLER

DEVELOPMENTSYSTEM 73

THEPARTS 73

EDITOR64 74

Added Editing Functions on EDITOR64 79

ASSEMBLERS 80

LOADERS 82

THEMONITORS 83

Some Examples 88

CHAPTER5: STRANGENEWNUMBERS 91

Decimal, Binary and Hexadecimal Numbers 91

Going Between Number Systems 96

Using Conversion Charts 96

Conversion Programs 98

HowNotTo Worry About Numbers 101

CHAPTER 6: WHAT'S INYOURMICROPROCESSOR? . 103

What's a Register? 103

TheAccumulator 104

TheX andY registers 105

The Processor Status Register (Status Register) 105

NegativeFlag 106

overflow Flag 107

BreakHag 107

DecimalFlag 107

II.

InterruptFlag 107

Zero Flag 107

CarryFlag 108

StackPointer 108

Program Counter ,. 110

Input/Output Port 110

CHAPTER7: MEMORYANDSTORAGE 113

Line numbers and Addresses: AComparison 113

ROMand RAMmemory 116

MINI-MONITOR 119

Backward Numbers: Low-Byte / High-Byte Storage 121

Bytes, Opcodes andAddressing Modes 123

SUMMARY 124

CHAPTER8: JUMPINGIN 125

Whereto Stick Your Programs 125

Auto-Placement With Kids'Assembler 125

ORG Pseudo-Opcode In Merlin 125

Commodore Assembler's * = function 126

Visiting Built-in Subroutines with JSR 126

Getting Out with RTS 128

Loading up with LDA 129

Implied, Immediate and Absolute Addressing Modes ... 132

Storing with STA 134

Storage in Empty, UnusedRAM.... 134

Storage in "Soft-Switch" Addresses 135

Storageon Your Screen 140

SUMMARY 142

CHAPTER 9: USINGTHEXANDYREGISTERS 143

How to use theX and Y Registers 143

Transfers With TAX, TAY,TXAandTYA 145

Incrementing and Decrementing with

INX, INY, DEXandDEY 148

FromX and Yto Memorywith STXand STY 150

Addressing Modes with theX and Y Registers 153
Indexed Absolute Addressing 154

Indexed Indirect Addressing 157

Indirect Indexed Addressing 161

III.

CHAPTER 10: LOOPSANDBRANCHES 165

Program Structure 165

Sequential 165

Loops 166

Branches 166

HowBASIC Logic Works in Assembly Language 167

Looping to Save Programming Time 168

Indexing With Loops 172

NestedLoops 175

Branching Forward With JMP, BEQ and BNE 177

SUMMARY 181

CHAPTER 11: ADDINGANDSUBTRACTING 183

Incrementing and Decrementing Memory: INC and DEC.. 183

Adding and Subtracting in the In the Accumulator:

ADCandSBC 186

Using CLC and SEC 187

SUMMARY 191

CHAPTER 12: INTERACTING WITH ASSEMBLY

LANGUAGEPROGRAMS 193

Introduction 193

Reading Input From the Keyboard 194

Joystick Control 203

TheEOR instruction 205

Making Messages: ASC and .BYTE 221

Message Maker for Kids' Assembler 215

SUMMARY 218

CHAPTER 13: HOTGRAPHICS 218

Introduction 219

Low Resolution Graphics 220

Saving Plotted Lines 228

Animation 230

External Control ofMovement 237

SUMMARY 246

CHAPTER 14: BLAZING SPRITES AND

MONSTROUSSOUNDS 247

Sprite Graphics 247

Sprite Creation 251

IV.

Sprite Building 260

Kids' Sprite Assembler 265

Full Horizontal Movement 272

Sprite Expansion 272

Assembly Sounds 274

SUMMARY 278

CHAPTER 15: DOWNTHEROAD 279

Introduction 279

Merging Subroutines 280

Appending With Merlin 280

AppendingWith CommodoreEDITOR64 280

Appending and Inserting Subroutines 285

Getting to Know the Other Opcodes 289

Resources for Learning more About

Assembly Language Programming

onthe Commodore 64 290

UserGroups 290

Reference Books 291

How-To Books 292

Magazines 293

You'reOn Your Own 294

APPENDICES 297

APPENDIXA: KIDS' ASSEMBLER 299

APPENDIX B: 6510OPCODES 309

APPENDIXC:MEMORYMAP1:DIAGRAM 315

APPENDIX D: MEMORYMAP 1: PLACESTO VISIT..317

APPENDIXE: BASICTOKENCHART 321

APPENDIX F: HEXADECIMAL-DECIMAL

CONVERSIONCHART 323

APPENDIX G: DECIMAL-HEXADECIMAL

CONVERSIONCHART 325

APPENDIX H: SCREEN STORAGEADDRESSTABLE 327

APPENDIX I: COLORSTORAGELOCATIONTABLE 329

APPENDIX J: ASCIICODE 331

APPENDIXK: SCREENSTORAGE DISPLAY CODES. 333

INDEX 335

V.

PREFACE

Learning assembly language programming is a challenge not

everyone will accept. It is not as easy to learn as BASIC, and it re

quires learning how to work an assembler as well as learning

assembly language itself. Many who attempted to learn assembly

language have been stopped by lack ofan assembler, lack ofinstruc

tions on how to work an assembler or lack of instructions for learn

ing assembly language on the Commodore 64. If any one problem

didn't prevent learning the language, the combination of problems

did.

Since these problems are real, I decided that it would be a good

idea to create a book that provided solutions to all of these hurdles.

First, the book would supply a simple assembler that would be in

structional as well as functional. Secondly, it would explain how to

work the most popular assemblers for the Commodore 64, in

cluding the one provided in the book. Finally, the book would take

assembly language a step at a time, explaining how to program using

assembly language instructions. That's what this book does.

As the title implies, this book was designed for kids. This doesn't

mean the book is for children, but rather it's for kids who want to

enjoy learning something. I would have never learned BASIC or

assembly language if at some point I didn't start enjoying myself.

The same principle applies here. If we try to have a good time while

learning assembly language, it becomes an interesting challenge in

stead of boring work. There are lots of examples that show

something about assembly language in a fun way.

VI.

ACKNOWLEDGEMENTS

If ever there were a group of people who were willing to help an

author, it's my Commodore computer club, the San Diego Pet

Users Group. Jane Campbell, Don Johnson and Barbara Prouty

answered plenty of questions and provided lots of ideas. Fellow

authors, Guy Grotke, who wrote Intermediate Commodore 64, and

David Miller, author of Commodore 64 Files, were equally helpful

with information and suggestions. Eric Goez is responsible for

teaching me most of what I know about assembly language pro

gramming. Roger Wagner, author of Assembly Lines: The Book,

served as an excellent editor. My own kids, Billy and David, were

guinea pigs whenever I could detach them from MTV. My wife Eli,

as usual, was a good sport about the whole thing. Naturally, any

fault with this book lies with the author, not with those who so will

ingly helped.

VII.

CHAPTER 1

INTRODUCTION

What This Book Is About

This book is about creating machine language programs with an

assembler. So the first thing we will learn how to do is to use an

assembler. Ifyou do not have an assembler, I've included one in this

book you can use. You will learn how to write assembly language

with specific assemblers. We will go through their use step by step

covering only their basic features. Most assemblers have advanced

features you can use, but we will not be going into these aspects of

assemblers. Once you are comfortable on this level, you can read

more advanced books and documentation for special features ofthe

various assemblers. Ifyou already have an assembler, and you know

how to use it, you can skip Chapters 2-4 since their sole purpose is to

explain how to operate different assemblers.

Secondly, this book will explain using assembly language coding

procedures. There are many different operations you can perform

with an assembler. In fact there are 151 different machine opcodes

accessed by 56 assembly language opcodes. An opcode is an instruc

tion something like BASIC statements. However, we are not going

to cover all the assembly language opcodes. Some opcodes involve

complicated operations, and we're not going to get overly advanced

1

in this book. It is more important to learn how to use the fundamen

tal operations well and understand their use clearly than try and

learn everything at once and not understand what you're doing.

Nevertheless, when you are finished with this book, you will be able

to write assembly language programs. Furthermore, we are only go

ing to deal with the Commodore 64. If you have a different com

puter, even a VIC 20, you should get a different book.

Finally, we're going to have to spend some time on how your

microprocessor handles code, different number systems and

storage. To be honest, this isn't a lot of fun, but once we're through,

you'll understand a lot more about your computer and how to han

dle machine and assembly language operations. This is all covered in

Chapters 5-7. If you know about binary, hexadecimal and decimal

number conversions and how the whole thing works in your

microprocessor, skip these chapters. (There's no sense in spending

time on something you already understand.) From Chapter 8 on, we

start writing assembly language programs.

Who This Book is For

This book is for kids who want to begin programming in

assembly language. You might want to know the difference between

a general book for beginners and one for kids. In a lot ofways there

is no difference, especially if this is your first venture into assembly

language. However, we're not going to get too serious, and the em

phasis will be on having a good time learning assembly language

programming instead of a comprehensive guide to professional pro

gramming. Also, we're going to play a lot with little routines that do

crazy things to your Commodore 64 instead of writing programs for

the sequential development of applications. This means we're not

going to be getting into abstract structures and theories about

microprocessors. Instead the emphasis will be on learning by doing.

Most ofthe routines will display something to the screen so that you

can see what's going on. This means we will be doing a lot with text

and graphic displays and not so much with mathematical manipula

tions important for business applications. Besides, its more enter

taining to watch a sprite go screaming across the screen than adding

up a column of numbers.

As a warning to those of you who just got your Commodore 64,

you should know that assembly language programming is a lot more

difficult to master than BASIC. In fact, if you do not know how to

program in BASIC, I would strongly recommendyou learn it before

tackling machine and assembly language. Many of the examples

and explanations are based on the assumption that you have a work

ing knowledge of BASIC. There are several good books for kids

learning BASIC, including KIDS TO KIDS ON THE COMMO

DORE 64 and KIDS AND THE COMMODORE 64, and you

should read them before going on here. However, if you know how

to program in BASIC, you're halfway to understanding machine

language since you can transfer much of the BASIC programming

logic to assembly language programming.

Finally, since this book is designed for kids, you might expect to

be talked to as adults tend to talk to kids. The last thing I want to do

is to talk down to anyone. We'll go slowly and clearly, and we'll

have some fun, but don't expect to be treated like a half-wit. Also,

this book is not going to have a lot of tests to see if you got

everything right. Books with little tests at the end of the chapters are

fine if you like taking tests. You have enough tests in school; so you

won't get any in this book. Instead we'll have lots of example pro

grams that explain and illustrate the use of various assembly

language programming techniques. By using your own imagination

and playing around with the various opcodes, you can learn more

than by taking tests.

Why Use Assembly Language?

Most books on assembly and machine language explain the speed

and compactness of machine code as the major reason to use it in

stead of BASIC. That's certainly true, but I like assembly language

because you can really grab control of your Commodore 64, im

press your friends and make a fortune. If you have ever played a

good arcade game, chances are it was written in machine language

with an assembler. The sound and speed of movement just aren't

possible with BASIC. If you ever shelled out money for such a

game, who do you think is getting it? A good chunk of the money

goes to the person who wrote the game program. Believe it not, I

know kids who can retire when they graduate from high school with

the money they've made programming with machine language.

Several other kids I know have part-time jobs after school working

for businesses requiring customized programs written with

assemblers. They may not make a fortune, but they get paid better

than the kids working in fast food joints and enjoy their work aheck

of a lot more. Now don't expect to write a best-selling arcade game

after you read this book or even get a paying job as a programmer,

but you will get started, and even the best programmers had to start

somewhere.

Now if you're not interested in making money as a professional

programmer, you can treat assembly language programming as an

adventure game. The whole purpose of adventure games is to find a

treasure hidden in a maze of caverns, tunnels, castles and dungeons.

Believe me, once you enter the caverns of your Commodore 64's

memory with its 64,000 caves ofRAM plus all the tunnels ofROM,

you'll need all your wits to save your neck. What's more, once you

understand the memory, you will have all kinds of control even the

best adventure games cannot provide.

Finally, if you have any

friends who know even a little

assembly language programm

ing, you got to admit that you're

impressed. Kids who can handle

machine code have a certain

magic about them that draws

admiration. I admit it; it's fun to

impress people and show off.

You don't need any brass band

or be a loud mouth with

assembly language. Just crank

up some code and let her rip.

ill

Assembly language
programmers

have style!

This book is not meant to disparage BASIC; I use BASIC all the

time. It's quicker to write a program in BASIC and less difficult to

de-bug. As we will see later in this chapter, one of the most useful

applications of assembly language programs is to write subroutines

for BASIC. So instead of abandoning BASIC altogether, you can

use assembly language programs to enhance your BASIC programs.

What is an Assembler?

An assembler is a program that allows you to enter machine

language using a standard set of "mnemonics." What?!! First we

better explain what "mnemonics" are. Pronounced 'ni-mon-iks',

mnemonics are aids to help remember something. All ofthe instruc

tions for your 6510 microprocessor are given with three letter

mnemonics. For example, one commonly used instruction is

'LDA.' The mnemonic LDA stands for LoaD Accumulator. The

machine language opcode for LDA in the immediate mode is the

hexadecimal number $A9 or decimal 169. Since it's a lot easier to

remember LDA instead of $A9 or 169 when you want to LoaD Ac

cumulator, programmers prefer using assemblers instead of enter

ing machine code directly. (In fact, a lot of machine code is entered

with POKEs from BASIC. A POKE X,169, where 'X' is some ad

dress in memory, could very well be a machine language instruction

from BASIC to perform an LDA.)

Secondly, assemblers keep track of everything for you. When

machine language is entered into your machine, you must use se

quential addresses for your instructions and values. Let's suppose

you want to enter your machine language program in addresses

49152 to 49162 ($C000 - $C00A). Depending on what instructions,

modes, values and addresses are used, more or less memory will be

taken up. Instead of having to figure out all of these elements as you

go along, the assembler does it for you. For example, if you use the

LDA instruction in the immediate mode, you take up two addresses.

However, if you use LDA in the absolute mode, you need three ad

dresses. Furthermore, while LDA in the immediate mode has a

machine language value of $A9 (169 decimal), LDA in the absolute

mode has a value of SAD (173 decimal.) This is all understood by

your assembler, and you don't have to do anything other than give it

the mnemonic instruction and mode to have it do what its supposed

to do.

If you do not understand everything just discussed, DON'T

WORRY! Essentially, all that Pm trying to tell you is that an

assembler makes programming in machine language a lot easier!

You're not expected to grasp everything all at once, and what is

unclear at this point will make a lot more sense as you start working

with an assembler. The trick is to forge ahead and start working with

an assembler and the programs and instructions in this book. You

will remember when you started learning BASIC that everything

was not clear until you started experimenting, learning special tricks

and writing your own programs. The same is true with assembly

language. Practice will lead to understanding.

Machine and Assembly Language

By now, you probably realize that assembly and machine

language are two sides of the same coin. Assembly language uses

mnemonic codes to enter numeric machine code. In addition, an

assembler keeps track of everything needed for a machine program

to execute. For example, let's look at three programs that all do the

same thing. First, we'll look at how the program would be entered

with an assembler, then we'll see what it looks in machine language,

and then we'll see how it would be entered from BASIC directly into

machine code. Each method ends up with the same result, and I'll let

you decide what method is the most understandable and least dif

ficult. All the program does is to jump to a subroutine located inside

your computer at hexadecimal address $E544 (58692 decimal) and

then returns to BASIC. The subroutine clears your screen and puts

the cursor into the upper left hand corner.

Assembly Language

ORG $C000 ; Begin storing program here

JSR $E544 ; Jump to subroutine at $E544

RTS ; Return to BASIC

Machine Language

$C000 $20

$C001 $44

$C002 $E5

$C003 $60

BASIC

10 C = 58692 : REM DECIMAL VALUE FOR $E544

20 LB = C - INT(C/256) * 256 : REM LO-BYTE

30 HB = INT(C/256): REM HI-BYTE

40 POKE 49152,32 : REM JSR

50POKE49153,LB

60POKE49154,HB

70 POKE 49155,96 : REM RTS

Ifyou think the assembly language program is the simplest you're

right! Even with the REM statements, it's difficult to know what's

going on in the BASIC program, and at this stage of the game, the

machine listing should make no sense at all! In the assembly pro

gram, all you have to do is to tell it where to start placing the code

with the ORG directive (or some similar instruction, depending on

the assembler), and then using the mnemonic codes, tell it what you

want it to do. Since the program is very small, using only four ad

dresses or bytes, you can imagine how difficult it would be to enter

everything in machine language or POKE it in with BASIC with

longer programs. In magazine listings, you've probably seen BASIC

listings with POKEs and then a mile of DATA statements with the

values to be POKEd in. The programmer probably had to first write

the program using an assembler and then "disassemble" it with

PEEKs to get all those values.

Just for fun, key in the BASIC program and RUN it. When

you're finished enter:

SYS 49152

Your screen will clear. Of course it's a lot easier to PRINT

"{CLR/HOME}" from BASIC to do the same thing, but a pro

gram line in BASIC with the instruction to clear the screen and home

the cursor takes up a lot more room in your computer's memory.

Later in this chapter we'll compare the amount of memory used to

see precisely how much more space is used by BASIC and why

machine code is so much faster.

ASSEMBLERS COVERED IN THIS BOOK

Since learning how to use a specific assembler requires special in

structions, I decided to go into detail on the operations of certain

ones that you may already have, are recommended or, if you don't

have one, the one in this book. If you have an assembler and know

how to use it, you can skip this section and Chapters 2-4. If, on the

other hand, you bought an assembler not covered in this book but

cannot figure out how to work it, take a look at Chapters 2-4, and

your's may work in a similar manner to ones we discuss. If all else

fails, you can always key in the Kids' Assembler in the book and use

it.

The Commodore 64 Macro Assembler Development System

Chances are if you own an assembler already, you probably have

the one made by Commodore. I found it to be difficult to under

stand, but once I got used to it, it works fine. You can edit, assemble

and load your code. It also comes with a machine language monitor

for entering assembly or machine language routines. However, it

does take a lot of work to load all the different files necessary to do

the different tasks required in writing assembly programs. In

Chapter 4, we'll go through its use step by step so that you can use it

effectively.

The Merlin 64 Assembler

This assembler is my own personal choice, and if you don't have

an assembler and want to get a good quality one inexpensively, I

would suggest this one. Roger Wagner Publishing has made a

special deal for kids. In the back ofthis book, you will find a coupon

for the Merlin 64 Assembler at a reduced cost. You can also find it in

your local stores.

8

The Kids' Assembler

In Chapter 2 and Appendix A there are BASIC listings for an

assembler written especially for kids. (In Chapter 2, we go through

the program in parts to see how it assembles code, and in the Appen

dix, the listing contains all of the instructions used by the 6510

microprocessor. For the time being, use the one in Chapter 2 since it

deals with just those instructions we will be using.) Since I wrote this

assembler, I can criticize it. It has a minimal editor, it uses non-

standard opcodes, and because it is written in BASIC it is slow.

However, it does have a certain amount of error trapping so that if

you enter an illegal value or instruction, it will let you know right

away. It also shows you where your code is going in decimal values.

Furthermore, since you will key it in yourself, it will help you

understand what's going on. Best of all, it's very simple to use, and

it's free! Sooner or later, though, you will want to get a good

assembler with an editor and monitor.

Other Assemblers Not Covered in this Book

There are several magazines that provide listings of machine

language and BASIC assemblers. Magazines such as COMPUTE! 's

GAZETTE and THE COMMANDER have had listings of

assemblers, editors and monitors for the Commodore 64. Each

assembler, like the ones discussed in this book, have their own uni

que characteristics and manner of handling assembler instructions.

Likewise, several companies make commercial assembler/editors,

but there are far too many to explain each one's use here. Since the

documentation for these assemblers ranges from the fairly clear to

the almost incomprehensible, you might have a problem under

standing how to use them. Therefore, I have provided a short sec

tion at the beginning of Chapter 2 entitled' 'Assemblers in General''

to give you a running start on their use. Actually, we will be dealing

with entering code with "editors" in that section, but most

assemblers have built-in editors so that when you run the assembler,

you also have access to the editor. (The Commodore Editor64 and

Assembler64 are separate co-resident files, however.) After reading

that section, re-read the documentation with your assembler/editor

and you can probably get everything going.

BASIC and Assembly Language

As we have seen, there are some connections between BASIC and

assembly language. In fact, after going through a number of inter

pretive steps, the programs you write in BASIC are ultimately ex

ecuted in machine language. Since there are so many interpreta

tions, though, it takes longer to execute a BASIC program than one

written in assembly language. Let's take a look at our little machine

language program to clear the screen and one written in BASIC that

does the same thing.

JSR $E544

RTS

10 PRINT CHR$(147) ^Leave this in memory

We used only four addresses for our machine language program.

Address Opcode or Operand

Hex Dec

$C000 49152 $20 ^Machine code for JSR

$C001 49153 $44 ^Low byte of jump address

$C002 49154 $E5 ^High byte of jump address

$C004 49155 $60 ^Machine code for RTS

Now, how do we examine the memory used by our BASIC pro

gram? The most simple way is to subtract the amount of free

memorywe have from the 38911 bytes that are free when we start up

the Commodore 64. You remember the FRE(0) statement in

BASIC. If you PRINT FRE(0) you will be presented with the

amount of available memory. Since this is a negative number, we

have to add it to 65536 to see how much memory is available. Then

by subtracting that amount from 38911 we will find how much our

one line program used. Therefore enter:

PRINT 38911 - (65536+ FRE(0)) {RETURN}

You should have gotten '17', the number of bytes used by the pro

gram. That's over four times the amount used by our assembly

language program!

10

To actually see the code in your computer in a BASIC program,

we will "disassemble" the BASIC code. In your Commodore 64,

BASIC programs begin at location $800 (2048 decimal). To find the

end of the BASIC program and the start of variables, we look at a

'pointer' at locations $2D-$2E (45-46 decimal). A pointer is pretty

much what it implies - it points to an address. By PEEKing at the

locations between 2048 and the address stored in the pointer to the

end of the program, we should be able to see the entire BASIC pro

gram. So first, we have to find the end of the program. We do that

by PEEKing the value stored in locations 45-46 using the following

algorithm:

PRINT PEEK(45) + PEEK(46) * 256 {RETURN}

= = EVERYTHING IS BACKWARDS! = =

Now if you're as smart as you look, you're probably wonder

ing why the heck we used that weird second PEEK. Whydid we

have to multiply it by 256 instead of just a regular PEEK? If

you look at the machine code listing, you will see that when we

jumped to the subroutine at $E544, the code was entered as $44

$E5 in two consecutive addresses. That's called low-byte, high-

byte storage. Therefore, when we pull a number out of two

consecutive storage address, we convert it to the correct

decimal value by multiplying the high byte (the second address)

by 256. Then by adding the high and low bytes, we get the cor

rect decimal number. You don't have to worry about

understanding all of this now, but just remember that numbers

are stored backwards! In Chapter 3, we'll explain more about

this feature of your Commodore 64's memory.

You should have gotten '2064'. After all, we know that the BASIC

program used 17 bytes of memory and BASIC programs begin at

2048. Thus, 2048 = 17 - 1 = 2064. (Since the program uses ad

dresses 2048 to 2064 inclusive, we subtract 1 from used memory to

get 2064.) Now, by PEEKing locations from 2048 to 2064 we can

see our entire program. Enter the following:

11

FOR X = 2048 TO 2064: PRINT X;PEEK(X): NEXT X

{RETURN}

You get the following "disassembly":

Byte#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Address

2048 0 ^Beginning of BASIC

2049 14

2050 8

2051 10 -^Line number

2052 0

2053 153 SPRINT statement

2054 32 -*Space

2055 199 ^CHR$ function

2056 40 -*Left parenthesis

2057 49

2058 52 -*Mystery numbers

2059 55

2060 41 -^Right parenthesis

20610

2062 0

2063 0

2064 88 -^Beginning of variables

Just look at all of that to dear the screen! When you key in a

BASIC program, you automatically key in a machine language pro

gram as well. While it is less work for you to key in BASIC, it's a lot

more work for your computer as you can see.

When you key in a BASIC word, it is 'tokenized' into a machine

code value. For example, we can see the token for PRINT to be 153.

Likewise CHR$ is 199. The line number is there along with the left

and right parenthesis, the space and some "mystery numbers" that

are special codes for CHR$ values. (Appendix D has a complete

listing of the BASIC tokens.) In the next section we'll do some tricks

with these values that will give you power over BASIC that you

never realized you had.

At this point you should be convinced that machine code is more

compact than BASIC as far as your computer is concerned. Fur-

12

thermore, you should be able to deduct that if there is less code for

the computer to read, it can execute it faster. Finally, you should see

that when you write BASIC you are also writing a machine language

routine. Now that you know all ofthat, let's see how you can use lit

tle machine code routines in your BASIC programs.

Machine Subroutines From BASIC

An old saying among programmers is that 10% of a program

takes 90% of the time. For example, if you have a sort routine in

your program, most of the time spent by your computer is sorting

the numbers or strings you enter. The actual sorting routine may on

ly take a few lines, but it is the routine that takes up the majority of

your execution time. Since BASIC code can be entered very quickly

compared with assembly code, a lot of programmers write machine

language subroutines that can be called from a BASIC program

using the SYS statement. In this way they can insert time-consuming

routines, such as sorts, in machine code and speed up the slow part

of the program without having to write the whole program in

assembly language. What's more, you can put the machine code in

one part of memory that will not interfere with the memory being

used by BASIC. To see how this works, let's write a little machine

code routine to change the color of your screen. We'll stick that in

memory out ofthe way ofBASIC and then call it from BASIC with

SYS.

You probably know that decimal address 53281 holds the code

for your background color. ByPOKEing 53281 with values between

0-15 you can change its color. In assembly language to do that, we

would store a value in that location.

LDA#0

STA 53281

RTS

The above routine loads the accumulator with the number 0, the

code for a black background, and sticks it in 53281. We'll put that

routine at addresses 49152-49157 with the following BASIC pro

gram.

13

10 BC = 53281 : REM ADDRESS OF BACKGROUND

COLOR

20 LB = BC-INT(BC/256) * 256 : REM LOW BYTE

30 HB = INT(BC/256): REM HIGH BYTE

40 POKE 49152,169 : REM LDA

50 POKE 49153,0 : REM BLACK COLOR CODE

60 POKE 49154,141 : REM STA

70 POKE 49155,LB : REM LOW BYTE ADRS

80 POKE49156,HB : REM HIGH BYTE ADRS

90 POKE 49157,96 : REM RTS

Now RUN the program and

then enter NEW. The BASIC

program is no longer in memory

because you entered NEW. Just

to be sure you got rid of it, enter

LIST {RETURN}. (If you get a

listing, better enter NEW

{RETURN} again.) The NEW

command got rid of the BASIC

program beginning in memory

location 2048. But since you put

your machine code way up in

49152, your machine code

should still be there. Now enter

the following BASIC program

that will use the machine

language program.

Machine Language

Program

$C000

$33C

BASIC and machine language
can run together.

10 PRINT CHR$(147)

20 INPUT "HIT RETURN TO SEE THE SCREEN GO

BLACK";A$

30 SYS 49152

40 PRINT "NOW IT'S BLACK!"

14

By the way, in case you didn't notice it, the BASIC program to

enter machine code was pretty long. With an assembler, you'd just

have the three lines to enter. So while BASIC in general is faster to

program, it takes a lot more to write assembly language with a

BASIC program than it does with an assembler.

Some Tricks to Get Started

To get off on the right foot, you should use your knowledge of

machine language to do something impressive. In order to see a part

of your new power, try the following.

1© GOTO 30

65535 PROGRAM WRITTEN BY ME

30 PRINT "TA DA!": END

You can't do it. Right? As soon as you enter 65535 as a line number

your Commodore 64 burps out a SYNTAX ERROR. Now try it

again.

10 GOTO 30

20 PROGRAM WRITTEN BY ME

30 PRINT "TA DA!": END

Normally, you'd get a SYNTAXERROR in Line 20 since it is in

an illegal format. However, Line 10 jumps to Line 30 so there's no

problem. Now, let's PEEK at locations 43-44 to find the beginning

of the program, and list a screen of locations and their values.

PRINT PEEK(43) + PEEK(44) * 256 {RETURN}

We get 2049. (Actually BASIC programs begin at 2048, but the in

teresting stuff starts at 2049.) Now let's "disassemble" the first 20

addresses of the BASIC program in memory.

FOR X = 2049 TO 2039: PRINT X;PEEK(X): NEXT
{RETURN}

You'll see the following (assuming you entered the program exactly

as listed - even including the spaces).

15

2049 10

2050 8

2051 10 ^Line number low byte

2052 0 ^Line number high byte

2053 137 ^GOTO token

2054 32 ^Space

2055 51

2056 48

2057 0

2058 36

2059 8

2060 20 <*Line number low byte

2061 0 ^Line number high byte

2062 80

2963 82

2964 79

etc...

Notice that address 2060 has the value of 20 for line number 20.

Right after that is a zero (0). Notice also that following the line

number at address 2051, address 2052 has a zero (0). The zeros

represent the high byte value for any line number. Now suppose we

put the maximum value in the low byte and high byte addresses for

Line 20. (The maximum value for any single byte is 255 or hex value

$FF.) Let's see what happens:

POKE 2060,255 : POKE 2061,255 {RETURN}

Go ahead and LIST your program. You now have the program with

the "illegal" line number. It should now look as follows:

10 GOTO 30

65535 PROGRAM WRITTEN BY ME

30 PRINT "TA DA!": END

It will still RUN, but no matter how much you LIST it, it will not put

the line numbers in numeric order. Also, unless you re-POKE the

addresses storing the line number 65535, you can't get rid of line

65535. Go ahead and try. If you want to customize your programs

and include a line with your name on it that most BASIC program-

16

mers cannot delete, use that little trick. The following is another ver

sion using the same trick. However, since we know the addresses

storing the second line number, we can include a line in the program

that will automatically change the line numbers.

10 GOTO 30

20 BY {YOUR NAME}

30 POKE 2060,255 : POKE 2061,255

40 PRINT CHR$(147): LIST

When you RUN the program you screen will clear and you will see,

10 GOTO 30

65535 BY {YOUR NAME}

30 POKE 2060,255 : POKE 2061,255

40 PRINT CHR$(147): LIST

Fromthe above, you should now be able to see that what is stored

in RAM space addresses can be changed. However, you have to

know something about how your BASIC or machine language pro

gram is stored in order to make changes. If you can make those

changes, then you have taken the first step in machine language pro

gramming. That's because the great bulk of assembly and machine

language programming is placing instructions and information into

addresses and using addresses to keep track of your program's in

formation. Again, you probably don't understand everything at this

point, but by practicing the examples and reading the explanations,

things will soon come together. Also, by changing the examples and

experimenting on your own, you will begin to understand how your

computer works in your own terms. (Just for fun, why don't you see

if you can change the little machine program that turned the

background color of the screen to black. See if you can change it to

different colors using values between 1-15. They're all listed at the

end of this chapter.)

SETTING UP

Before you start using your assembler, be sure to make a back-up

copy of it on a separate diskette or tape. There are a million ways to

blow a disk or tape with machine code; so if you don't want to lose

17

your assembler, make a back-up copy of it. The two commercial

assemblers discussed in this book, Commodore Assembler and the

Merlin assembler, can be backed up. Be sure to put a copy of the

assembler on your work disk and keep the master disk in a safe

place.

Likewise, with the Kids' Assembler be sure to make a back-up of

the disk or tape you SAVE it on. If you don't feel like keying it in,

there's a coupon in the back of this book that you can send in and

get a copy on disk for $10. Whatever you do, though, make back

ups of your assembler.

There are two versions of the Commodore 64 we'll classify as the

"old" and "new". In the old version, it is possible to store a

character in the screen memory area, and it will appear on your

screen after the screen has been cleared. On the newer versions, you

have to load both the color and character after a JSR $E544 (clear

the screen and home cursor) to see the characters. The old version

will work with either, but the new version requires the color.

Therefore, all of our programs will be set up for the newer version,

but will work on both the old and new versions.

Ifyou have a monitor, the default colors on your Commodore are

not too clear. Therefore, both the Kids' Assembler and Merlin pre

sent your screen with a white background and border and black let

ters for better viewing. Since the default color of characters is white

after a JSR $E544, a white on white display is invisible. Therefore,

we will have to take care to keep the character colors straight.

If you have a color TV or color monitor and prefer the default

Commodore colors, or some other combination, you can change

them by POKEing the following addresses with values, represented

by the variable X, between 0-15.

POKE 53281 ,X ^Background Color

POKE 53280,X *Border Color

X's value can be from 0-15

18

The colors are:

0 Black

1 White

2 Red

3 Cyan

4

5

6

7

Purple

Green

Blue

Yellow

8

9

10

11

Orange

Brown

Light Red

Gray 1

12 Gray 1

13 Light Green

14 Light Blue

15 Gray 3

This all may be familiar to you, but just in case you did not know

about changing your screen colors, you do now.

Now, let's get into assembly language!

19

20

CHAPTER 2

USING AN ASSEMBLER

Assemblers in General

When I encountered my first assembler, the greatest problem I

had was figuring out how to use it. There was no documentation for

it since it was a public domain version I got from my club. Later on

someone came along with the documentation, and after I read it, I

still didn't know how to work the darned thing!

Finally I realized the problem with most assemblers and their

documentation. THE DOCUMENTATION IS WRITTEN FOR

PEOPLEWHOALREADYKNOWASSEMBLY LANGUAGE!

For the kids (and adults) who do not know assembly language or

other assemblers, it doesn't help to know that a whiz bang assembler

has macro capabilities when you don't even know what a macro

capability is. Therefore, to get started, we're going to demystify

assemblers by exposing them for what they really are.

As we briefly mentioned in Chapter 1, all an assembler really does

is to neatly and simply arrange machine language code. The code

with which we work in assembly language can be broken down into

three parts:

21

1. Addresses to store code.

2. Instructions to tell the

computer what to do next.

(Opcodes)

3. The exact location or

mode relative to the instruc

tion. (Operands)

To understand a little about

what's going on with an

assembler, let's look at what

assembled (or compiled) code is

compared with the assembler in

structions that made it get that

way. (You remember our com

parisons between machine and

assembly code in Chapter 1.)

Compiler

Compiled Machine Code

HEX

Address

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

Iine#

1

2

3

4

Code

$20

$44

$E5

$A9

$A9

$8D

$21

$D0

$60

Assembler Source

Opcode

JSR

LDA

STA

RTS

DECIMAL

Address

49152

49153

49154

49155

49155

49157

49158

49159

49160

Code

Operand

$E544

#8

$D021

Code

32

68

229

169

8

141

33

208

96

22

We already know that assembly language is less mysterious than

machine code, but let me give you an idea of everything the

assembler did to compile the code.

1. First, it looks at the opcode (the instruction) and the mode of

the instruction and decides how many bytes it will take. For ex

ample, the instruction JSR (Jump to SubRoutine) takes up 3

bytes or addresses. The first byte is the machine opcode for

JSR and the next two bytes are needed for the address ($E544).

On the other hand, LDA in the immediate mode only needs

two bytes and addresses; one for the operand and one for the

value which has to be 255 ($FF) or less. The RTS opcode only

takes a single byte or address.

2. Next, the assembler arranges the operands greater than 255

($FF) and puts them in the lo-byte / high-byte configuration

your computer uses.

3. Finally, it places these values all in memory in ascending

order of addresses. ("Ascending" means from lower to higher

addresses.) This is called the assembled or compiled code.

The work of an assembler should not be very clear to you right

now, but later on the clouds will begin to clear and you'll say, "Oh

yeah! Now I get it." In the meantime, just think ofan assembler as a

"code arranger" to make writing machine language simpler.

The Standard Parts of An Assembler

An assembler package sometimes has several different files

representing the different things an "assembler" does. Actually, the

"assembler" is only a single part of what most people call

"assemblers." Generally, we deal with "editors" and "assemblers"

as different parts of a single tool, but usually you never "see" the

assembler do its work. Instead, you will be working primarily with

the editor. Now let's take a look at all the parts:

EDITOR. The editor is used to enter what's called "source

code." All of the mnemonic instructions, such as LDA and

STA are accepted by the editor. When the source code is

23

assembled into machine code, it is called the "object code." In

simple editors, such as the one in the Kids' Assembler, you can

only enter source code. You can't edit it after its been entered.

(It does have a good deal of error trapping so that if you enter

illegal opcodes or operands, it will let you re-enter legal ones

before continuing.) On more sophisticated editors, you can in

sert and edit lines, make global changes, move or copy big

chunks of code and save and load source code. The Merlin

Assembler and the Commodore 64 Assembler Development

System have editors that can do some or all ofthose things plus

more. When getting an "assembler", the real key to getting a

good one or bad one lies in what you can do with the editor, not

the assembler.

ASSEMBLER. Since the assembler part of an assembler is

pretty much invisible to the user, and they all do essentially the

same thing - compile code for you in machine language

- there's not a whole lot to say about how good or bad the ac

tual assembler is. However, since assemblers are so closely link

ed to the kind ofeditor one is using andhow it handles code, in

visible differences become apparent in the editor. A one-pass

assembler takes the opcodes and operands and orders them in

to machine code either as soon as you enter the information in

the editor (as does the Kids Assembler) or when you finish your

program. A two-pass assembler is used in just about all com

mercial assemblers for the Commodore 64. First, the two-pass

assembler finds the addresses and offsets for the labels, and

then on the second pass, compiles it into machine code. On the

Merlin Assembler and Commodore 64 Macro Assembler

Development System, you can use labels in your editor;

therefore, using two passes, the labels are automatically turned

into the correct addresses and offsets. On the Kids' Assembler,

since the editor will not accept labels, it compiles as soon as the

operand is entered. What this means for the user is that it's a

heck ofa lot easier to use a two-pass assembler since you can do

more things simply with the editor.

24

ASSORTED OTHER PARTS

1. LOADERS and SAVERS. Some assemblers have the

loaders built into the editor while others have separate files for

loaders. Most commercial assemblers will load the source code

from the editor. Object code (the compiled code that runs) is

saved either as SEQ or PRG files on your disk. (Tapes only ac

cept object code as SEQ files or as DATA statements in PRG

files.) If your object code is saved as a PRG file, you can load it

from disk with LOAD "FILENAME",8,1 and then SYS its

beginning address to make it run. If saved as SEQ files, it is

necessary to have a driver program to first load the file into

memory and then SYS it. A good assembly package will allow

you to load and save source code and object code. It is especial

ly important to have source code saved for developing larger

programs with an assembler so that you can work on the pro

gram at different times. Likewise, it is far better to have your

object code saved as a PRG file so that you can execute it

without having to load a special loader program. The Kids'

Assembler is good in that it saves object code as PRG files, but

bad in that it saves the source code only as a SEQ file that can

not be reloaded into the editor. (That's why the programs in

this book are relatively short!) The assembler by Commodore

is good at saving source code that can be reloaded into the

editor, but poor in that object code is saved as SEQ files requir

ing separate loader programs. The Merlin Assembler not only

saves source code files, but it saves object code as PRG files.

Furthermore, using the Sourceror program that comes on the

Merlin Assembler disk, you can create source code from object

code stored as PRG files. (That may not mean much to you

now, but if you have a diskfull of object code saved with the

Kids' Assembler, BELIEVE ME, you'll someday want the

source code.)

2. MONITORS. Several assembler paqkages include monitors.

(Monitors, in this instance, do not refer to the special TV sets

for computers.) A monitor is a program that lets to examine,

enter, change and execute machine code. In Chapter 1 we used

a do-it-yourself BASIC monitor in examining the addresses

25

and code they contained. I didn't include a monitor in this

book since I'm going to let you write your own! (There'll be

plenty of tips on how to do it, though.) The Merlin and Com

modore assembler packages contain very good monitors. The

Merlin monitor is especially useful since it is co-resident with

the editor/assembler.

3. DISASSEMBLERS. Disassemblers take assembled code in

memory and lists it in rudimentary mnemonic and machine

code. For example, a disassembly of our program in this

chapter might looks as follows: (All numbers are in hex

adecimal values.)

C000 2© 44 E5 JSR $E544

C003A9 08 LDA#$08

C005 8D21 DO STA$D021

C008 60 RTS$60

Disassemblers are very useful to see the relationship between

machine code and assembly code. Take a look at the dis

assembly above with the listings near the beginning of the

chapter to see if you can find the connection.

4. OTHER GOODIES. Assembler packages have all kinds of

enhancements to help you with your assembly code. Some have

de-buggers to help you find mistakes in your code. These vary

from the built-in error trapping in the Kids' Assembler to ones

that will let you find structural problems in your code. Second

ly, source code generators are very helpful to examine how

others have created object code, even ones created with dif

ferent assembler packages. The Sourceror in the Merlin

Assembler package is one such helpful program. Finally, many

assembler packages come with a set of source code files of

useful routines. These routines are not only valuable for seeing

how a certain operation works, but they can be incorporated

into your own programs to save you the time of developing

them yourself.

26

STANDARD EDITOR/ASSEMBLER FORMAT

When you first start entering assembly language code, you'll do it

from the editor. Just about all assemblers have four fields:

1. The label field.

2. The opcode field.

3. The operand field.

4. The comment field.

The fields arranged from left to right look like this in your editor:

LABEL OPCODE OPERAND COMMENT

As you enter the code in each field, to the left of the label field, line

numbers appear. These are something like BASICUne numbers, but

they usually have increments of 1 instead of 10 as in BASIC. (These

line numbers are not compiled!) A typical editor entry would look

liking the following:

LINE# LABEL OPCODE OPERANDCOMMENT

1 LDX #$0 ; Load X register

with©.

2 START TXA ; Transfer contents

of X to A

3 STA $400,X ; Store value in ad

dress $400 indexed

byX

4 INX ; Increment X

5 CMP #254 ; Compare A with

254

6 BNE START ; If A is not equal to

254 then go back

to line labeled

START

7 RTS

As you can see, it is unnecessary to always use all fields. Many

programmers do not use the comment field at all, while others use

27

several lines for nothing but comments. (Using the comment field is

equivalent to using REM statements in BASIC.) However, just

about every editor arranges its fields as they are above.

Editor/Assembler program writers have an idea of how to best

put assembler packages together, and so there are differences that

creep in using one package or another. Perhaps the biggest is in the

use of "Pseudo-Opcodes." Pseudo-opcodes are instructions that

are never compiled into object code. Instead, they tell the editor to

do something with the code. Often, they are called "directives" to

differentiate them from opcode "instructions." For example, ORG

and EQU are two commonly used directives for defining the load

location of a program and defining addresses with labels. For exam

ple the following is acommon label definition you will see in listings:

HOME EQU $E544

and instead of keying in,

JSR $E544

the programmer can enter,

JSR HOME

If you plan to use an assembler package not discussed in the next

three chapters, keep in mind what we have discussed here. In that

way, if the documentation for your assembler is unclear, you can at

least expect to find the fields we discussed above. Go back over your

documentation and then go ahead to Chapter 8 and try out some of

the example programs. If you can get them assembled and running,

you can learn more about how to use your assembler as we go along

comparing what's in the book with your documentation. You might

also want to take a look at the way the Commodore assembler and

the Merlin Assembler assemblers are used to help you understand

your own.

28

USING THE KIDS' ASSEMBLER

First off, if you have either the Merlin Assembler or the Com

modore 64 Macro Assembler Development System skip this

chapter, and go on to the chapters covering the assembler you have.

In fact, if you have any other assembler you know how to work, use

it instead of this one. However, if you have been confused by your

present assembler, the Kids' Assembler may help you get started.

Most importantly, by keying in this assembler, you'll learn about

what an assembler does. In Appendix A, there's a full blown version

of the Kids' Assembler. The one in this section has fewer opcodes

and it runs faster than the big one in Appendix A. I also included a

routine to save source code in this chapter. It doesn't save the source

code in a way you can re-use it, but you can read it. Also, I've

broken it down into sections so that you can do a piece at a time.

Once you key this in and get all the typing errors out, be sure and

make a back-up of it on a separate tape or disk!!! There are two dif

ferent ending routines beginning in Line 760. The first one is for disk

users and the second is for tape users. Use only one or the other. (If

you have a disk system and a cassette, just use the disk version.) By

the way, feel free to modify the program any way you want.

Okay, we're all set; so let's key in the first 15 lines and then see

what they do.

Kids' Assembler: C-64

10 POKE 53281,1 : POKE 53280,1 : PRINT CHR$(144)

20 GOSUB 4000

30X = 0

40 READ A : IF A = 255 THEN 60

50 READ B$: READ C : X = X+1 : GOTO 40

60 DIM DEC%(X),OPCODE$(X),BYTE%(X)

70 DIM AD(255),S$(255),C$(255)

80ER = X-1

90 RESTORE

100 FOR I = 0 TO X-1 : READ DEC%(I): READ

OPCODE$(I): READ BYTE%(I)

110 NEXT I

29

120 PRINT CHR$(146);CHR$(147)

130 PRINT "ADRS";

TAB(10);"OPCODE";TAB(25);"OPERAND"

140 FOR X= 1 TO 40 : PRINT CHR$(114);: NEXT

150 PRINT

First the program sets the background and border colors to white

and the characters to black in Line 10. This is simply to make it easy

for people using CRTmonitors or black and white TV sets to see the

screen. Ifyou like the blue colors, leave the line out or POKE in your

own colors. Line 20 goes to a header subroutine to give you

something to look at while the array is being loaded between Lines

40-110. The variable ER in line 80 is used in the ERror trapping

routine further on in the program. Line 30 just initializes the X

variable. (This is optional but a generally good habit.) Line 120

turns off the inverse mode and clears the screen. Finally, Lines

120-150 make your editor header showing the opcode and operand

fields along with the addresses where everything is going. It does not

have a label field, comment field or lines numbers. Theline numbers

are replaced by the addresses to give you a clearer idea of what's go

ing on with the assembler. The variables and arrays defined are:

X, I Counter Variables

A,B$ & C Data viewer variables

DEC%() Decimal value of machine opcode

OPCODE$() Nmemonic opcode

BYTE%() Number of bytes used by instruction

AD,S$,C$ Array variables for source code

This next block of code sets the starting address and asks for the

opcode.

160 REM *

170 REM SET ADDRESS AND INPUT OPCODE
"Iftffl RFM ****************************

190 SA = 0: PRINT "PRESS {RETURN} TO DEFAULT

TO 49152"

200 N = 0

30

210 INPUT "STARTING ADDR";SA: IF SA = 0 THEN

SA = 49152

220BA = SA

230 PRINT SA;TAB(10)

240 INPUT OC$: IF OC$ = "Q" THEN 760

250 C = 0

260 IF OG$ = OPCODE$(C) THEN D% = DEC%(C):

B% = BYTE%(C): GOTO 290

270 C = C +1 : IF C >ER THEN PRINT

TAB(10);CHR$(18);"ERROR";CHR$(146): GOTO 230

280 GOTO 260

290 IF B% = 1 THEN POKE SA,D% : SA = SA +1

300 IF B% = 1 THEN S$(N) = OC$: AD(N) = SA-1 :

N = N +1 : GOTO 230

The first thing this block does is to set the starting address. It

defaults to 49152 ($C000) since that's a clear area ofRAM. Alot of

programmers use the cassette buffer at 828 ($033C) since it is free

for disk users. Line 220 defines the constant BA to be the same as

SA (starting address) since SA is used as an address variable, and

we'll need the starting address later in the program. Lines 240 to 280

evaluate the opcode entered by the INPUT statement at Line 240. It

searches the arrays for a match in line 260 and gets the decimal value

of the machine code and the number of bytes the instruction will

use. Line 290 sees if the opcode only uses one byte, and if it does

then it enters the machine opcode in the address and returns to line

230 for another opcode. Line 300 stores the source code informa

tion. The variables are:

SA Variable address

BA Constant to store beginning address

OC$ Opcode entered

D% Decimal value of current opcode

B% Number of bytes used by current

opcode

C Counter variable

31

Now that we have the opcode entered, let's bring on the operand.

310 REM *************

320 REM ENTER OPERAND

330 REM *************

340 PRINT TAB(25);: PRINT CHR$(145);: INPUT OPR$

350 AD(N) = SA: S$(N) = OC$: C$(N) = OPR$: N = N +1

360 IF LEFT$(OPR$,1) < > "$" THEN

OPER = VAL(OPR$)

370 IF LEFT$(OPR$,1)= "$" THEN GOSUB 490

380 IF OPER > 65535 THEN GOSUB 630 : OPER = 0:

GOTO 340

390 IF OC$ = "BNE" OR OC$="BEQ" THEN GOSUB
700

400 IF OPER >255 AND B% < 3 THEN GOSUB 560:

OPER = 0: GOTO 340

410 IF OPER > 255 THEN GOSUB 640

First, in Line 340, the INPUT line is tabbed over and up to the

OPERAND field so you can see what you're supposed to enter.

Next, Lines 360-410 check out the operand for all sorts of condi

tions:

360 If this is a decimal stick it in the variable OPER

370 If this is a hexadecimal number, go convert it

380 If this number is greater than 65535 go to the error

routine and have the programmer try again

390 If there's a conditional branch in the opcode go find

the branch offset

400 If the value is greater than 255 and it's only a 2 byte

opcode, go to the error routine and have the program

mer try again.

410 If the value is over 255, go get it rearranged into the

lo-byte / high-byte values.

The new variables introduced are:

OPR$ Hex or decimal operand in string

OPER Numeric variable of operand

32

Once everything is all checked out and conversions are made after

the operand is entered, the code is immediately compiled in the next

routine.

420 REM ************

430 REM COMPILE CODE

44BJ nfclvl

450 IF B% = 2 THEN POKE SA,D% : SA = SA + 1

460 IF B% = 2 THEN POKE SA,OPER : SA = SA +1 :

OPER = 0: GOTO 230

470 POKE SA,D%: SA = SA +1

480 POKE SA,LB : SA = SA +1 : POKE SA,HB :

SA = SA +1 : OPER = 0 : GOTO 230

The compile block shows you just what's going on with an

assembler. It merely POKEs in machine code values for the

mnemonic opcodes and operands and keeps the addresses straight.

Lines 450-460 check for two byte opcodes, and then pops in their

values at the next two addresses, resets the opcode value, increments

the address, and then goes back to get the next opcode. Lines

470and 480 do the same thing for 3 byte opcodes using the LB (low

byte) and HB (high byte) variable supplied in a subroutine further

on in the program. (Line 410 in the previous block branched to the

subroutine for the LB and HB variables.) The new variables, LB

and HB will be discussed further on in the block where they are

defined.

At this point, go have agood stiff shot ofroot beer. (I did.) We've

actually gone through the entire assembly process! From this point

on, we will see the subroutines, DATAstatements and ending block.

They're crucial to the program, but the heart of the program is

already keyed in.

Now we're ready to start on the subroutines. The first one is a

very good little one to make HEX-DECIMAL conversions in any

program. (HINT#$FF: Ifyou want to write your own monitor, this

subroutine would be handy.)

33

490 REM*'

500 REM CONVERT HEX TO DECIMAL
510 REM **********************

520H$=MID$(OPER$,2)

530 FOR L= 1 TO LEN(H$): HD = ASqMID$(H$,L,1))

540OPER = OPER*16+HD-48 + ((HD > 57)*7)
550 NEXT L: RETURN

The heart of this subroutine is in Line 540. The loop between

530-550 converts the hexadecimal value in H$ to a decimal number

that can be POKEd into memory in the compile subroutine. Line

520 simply strips the '$' off OPER$ and stores the substrong in H$.

Next, we come to the double error trap for values over 255 ($FF)

entered with 2 byte opcodes and any operand value over 65535

($FFFF).

560 REM **********

570 REM ERROR TRAP

580 REM **********

590 PRINT CHR$(18);"ERROR-MUST BE LESS THAN

256"

600 FOR W= 1 TO 400 : NEXT W: PRINTCHR$(146);:

PRINT CHR$(145)

610 FOR X= 1 TO 27: PRINTCHR$(32);: NEXT

620 PRINT CHR$(157);CHR$(157);CHR$(145) :RETURN

630 PRINT CHR$(18);"VALUE OVER 65535

($FFFF)";CHR$(146): RETURN

Error Trap

34

There's nothing fancy about this subroutine. It simply pops an er

ror message if you're over 255 (a little spiffy, I admit) and does the

same thing in a 1 line subroutine in 630 if your operand exceeds

65535.

Now the next subroutine is another one you could use in a

monitor program. It takes any number over 255 and splits it into

high and low bytes.

640 REM ************************

650 REM CONVERT TO 2 BYTE NUMBER
fifitfl RPM ************************

670 LB = OPER-INT(OPER/256)*256

680 HB = OPER - INT(OPER/256)

690 RETURN

The routines in 670 and 680 do all the work. They're simple but

vital little formulas. See how these variables are compiled in Line

480. They created the following variables:

LB Low byte - first address

HB High byte - second address

Now this next subroutine determines the operand value by com

paring two addresses. The value is the "branch offset" sending the

program branching forward or backwards.

700 REM *************

710 REM BRANCH OFFSET

720 REM *************

730 IFSA > OPER THEN OPER= 254-(SA-OPER)

740 IF SA < OPER THEN OPER= (OPER-SA)-2

750 RETURN

Notice how the value has to be calculated differently depending

onwhether the address value (SA) is greater or lesser than the branch

address (OPER).

At this point, take a good look at your system. If you use a

cassette to store your programs, skip this and go to the next block. If

35

you have a disk, this is the block you want. It gives you the options

of saving your program, ending or going back to the beginning. The

most valuable part ofthe routine is in Lines 890-970. It contains the

save-to-disk-as-a-program routine for your OBJECT CODE! Lines

980-1040 save the source code as a SEQ file.

Disk Version Only

760 REM **************

77© REM ENDING ROUTINE

780 REM **************

790 NB = SA-BA

800 PRINT CHR$(147)

810 FOR X = 1 TO 5: PRINT: NEXT

820 INPUT'SAVE PROGRAM(Y/N)";AN$

830 IF AN$ = "Y" THEN 890

840 PRINT: PRINT: PRINT "PROGRAM

IS";NB;"BYTES LONG"

850 PRINT "TO EXECUTE 'SYS"';BA : PRINT

860 INPUT "(B)EGIN AGAIN OR (E)ND";DE$

870IFDE$ = "B"THEN120

880 PRINT: PRINT'END" : END

890 PRINT CHR$(147): FOR X= 1 TO 5: PRINT:

NEXT

900 LB = BA-INT(BA/256)*256: HB = INT(BA/256)

910 INPUT "ENTER FILE

NAME";NW$:NF$ = NW$:NF$ = "0:" + NF$ + STR

$(BA) + ",P,W"

920 OPEN2,8,2,NF$

930 PRINT#2,CHR$(LB) + CHR$(HB)

940 FOR X = BA TO SA-1: OC = PEEK(X)

950 PRINT#2,CHR$(OC)

960NEXTX

970 CLOSE2

980NF$ = ""

990 NF$ = "0:" + NW$ + ",S,

36

1000 OPEN 9,8,9,NF$

1010FORV = 0TON-1

1020 PRINT#9,AD(V),S$(V),C$(V)

1030 NEXT V

1040 CLOSE9

1050 GOTO 840

There's nothing fancy about the save, end or begin branches.

However, our constant, BA is used to find the number of bytes in

theprogram by subtracting it from SA, the last address entered + 1.

The save-to-disk routine from 890-970 is one I got from Guy

Grotke's book, The Intermediate Commodore 64. It stores the

beginning address ofyour machine language program as part ofthe

file in line 910. Therefore, when you LOAD "FILENAME",8,1

the program knows where to go. To help you remember that, I add

ed the starting address to the file name. Therefore, when you save a

machine file, the name includes its load address and all you have to

do once the program is loaded is to SYS that address. The new

variables in this block are :

NB Number of bytes in program

X Counter variable

AN$, DE$ Strings for INPUT branches

NF$ Name of file to write to disk

OC Decimal value of opcodes and operands

If you just finished keying in the above block of the ENDING

ROUTINE jump (JMP in mnemonic opcode) to the block, OP

CODE DATA. This following block is a repeat of the ENDING

ROUTINE except it is for saving a sequential file of your program

to tape instead of a PRG file to disk.

Tape Version Only

760 REM **************

770 REM ENDING ROUTINE

780 REM **************

790 NB = SA-BA

800 PRINT CHR$(147)

37

810 FOR X= 1 TO 5 : PRINT: NEXT

820 INPUT'SAVE PROGRAM(Y/N)";AN$

830 IF AN$ = "Y" THEN 890

840 PRINT: PRINT: PRINT "PROGRAM IS";NB;"BYTES

LONG"

850 PRINT "TO EXECUTE 'SYS"';BA : PRINT

860 INPUT "(B)EGIN AGAIN OR (E)ND";DE$

870 IF DE$ = "B" THEN 120

880 PRINT: PRINT'END" : END

890 PRINT CHR$(147): FOR X= 1 TO 5: PRINT: NEXT

900 REM * * * TAPE SAVE * * *

910 INPUT "ENTER FILE NAME";NW$:NF$= NW$

920 OPEN21,1,1,NF$

930 PRINT#21,BA

940 FOR X = BA TO SA-1: OC = PEEK(X)

950 PRINT#21,OC

960 NEXT X

970 CLOSE21

980NF$ = ""

990NF$ = NW$ + ".S"

1000 OPEN22,1,1,NF$

1010FORV = 0TON-1

1020 PRINT#22,AD(V),S$(V),C$(V)

1030 NEXT V

1040 CLOSE22

1050 GOTO 840

The good news is that you can save machine language programs

to tape, but the bad news is they are saved as SEQ files instead of

PRG files. That means we will have to have a special "Loader" pro

gram for you tape users. We'll look at that later. For now, let's see

what the above block does. First of all, there are decision branches

in lines 820-880. These just prompt you with questions about saving

your program and whether you want to end or start over. Line 790

finds the number of bytes (NB) in your program to be used both in

telling you how much memory you used and as a variable to be

stored on your tape file. Line 920 begins the storage sequence of

your program. Basically, this section OPENs a tape file, first stores

the number of bytes in your program (Line 930), and then it PEEKs

38

at your machine language program in memory and stores the values

on your tape. The loop in Lines 940-960 does this. The following

variables were introduced in this block:

NB Number of bytes in program

X Counter variable

AN$, DE$ Strings for INPUT branches

NF$ Name of file to write to tape

OC Decimal value of opcodes and operands

Now this next section will have to be done very carefully. It has all

of the information your assembler will use. Each DATA statement

uses a separate line containing the following information:

Decimal value of opcode

Mnemonic for opcode

Number of bytes used by opcode and mode

The reason I put every set of DATA statements in a separate line

was to help you debug typing errors and to see the relationship bet

ween machine opcode (the first number), mnemonic opcode (the

string), and the number of bytes used by an operation (the second

number). Also, you will get a preview ofthe special conventions this

assembler uses in mnemonic opcodes. In most discussions of

machine and assembly language programming, the machine opcode

is given in hexadecimal values, but since your assembler is written in

BASIC, it needs the decimal values to 'compile4 the code into

memory. OK, now take a deep breath and go ahead and key in this

code.

2000 REM ***********

2010 REM OPCODE DATA

2020 REM ***********

2030 DATA 24,CLC,1

2040 DATA 32,JSR,3

2050 DATA 56,SEC,1

2060 DATA 73,EOR#,2

2070 DATA 76,JMP,3

2080 DATA 77,EOR,3

2090 DATA 96,RTS,1

39

2100 DATA

2110 DATA

2120 DATA

2130 DATA

2140 DATA

2150 DATA

2160 DATA

2170 DATA

2180 DATA

2190 DATA

2200 DATA

2210 DATA

2220 DATA

2230 DATA

2240 DATA

2250 DATA

2260 DATA

2270 DATA

2280 DATA

2290 DATA

2300 DATA

2310 DATA

2320 DATA

2330 DATA

2340 DATA

2350 DATA

2360 DATA

2370 DATA

2380 DATA

2390 DATA

2400 DATA

2410 DATA

2420 DATA

2430 DATA

2440 DATA

2450 DATA

2460 DATA

2470 DATA

2480 DATA

2490 DATA

105,ADC#,2

108,(JMP),3

109,ADC,3

121,ADC-Y,3

125,ADC-X,3

129,(STA-X),2

133,STA-Z,2

134,STX-Z,2

136,DEY,1

138,TXA,1

140,STY,3

141,STA,3

142,STX,3

145,(STA-Y),2

148,STY-X,2

152,TYA,1

157,STA-X,3

153,STA-Y,3

154.TXS.1

160,LDY#,2

161,(LDA-X),2

162,LDX#,2

164,LDY-Z,2

165,LDA-Z,2

166,LDX-Z,2

168,TAY,1

169,LDA#,2

170,TAX,1

172,LDY,3

173,LDA,3

174,LDX,3

177,(LDA-Y),2

185,LDA-Y,3

186.TSX.1

188.LDA-Y.3

189,LDA-X,3

190.LDX-Y.3

192,CPY#,2

193,(CMP-X),2

196,CPY-Z,2

There's a

lot of DATA
in here!

40

2500 DATA 197,CMP-Z,2

2510 DATA 198,DEC-Z,2

2520 DATA 200,INY,1

2530 DATA 201,CMP#,2

2540 DATA 202,DEX,1

2550 DATA 204,CPY,3

2560 DATA 205,CMP,3

2570 DATA 26,DEC,3

2580 DATA 208,BNE,2

2590 DATA 221 ,CMP-X,3

2600 DATA 222,DEC-X,3

2610 DATA 224,CPX#,2

2620 DATA 230,INC-Z,2

2630 DATA 232,INX,1

2640 DATA 233,SBC#,2

2650 DATA 234,NOP,1

2660 DATA 236,CPX,3

2670 DATA 237,SBC,3

2680 DATA 238,INC,3

2690 DATA 240,BEQ,2

2700 DATA 249,SBC-Y,3

2710 DATA 253,SBC-X,3

2720 DATA 254,INC-X,3

2730 REM

2740 REM ADD ADDITIONAL DATA HERE

2750 REM*****

2760 DATA 255

It is important to have line 2760 be the LAST DATA statement

entered. Whenyour program READs 255 as a value, it knows that it

is at the end of the DATA. Therefore, if you get ambitious and add

additional opcode, move Line 2760 to the end of your new DATA

statements. In the full program in Appendix A, you will find all of

the DATAvalues for additional opcode. (Be careful in adding BCC,

BCS, BMI, BVC and BVS. When used, their operands will have to

be sent to the branch offset subroutine in beginning in line 700. All

you have to do is to add lines like 390 to initiate the branch. Use line

numbers 391-399 for branch initiators with these branch opcodes

41

not included in this simplified version of the Kids' Assembler. The

full assembler in Appendix A takes care of all of this for you, of

course.)

Finally, we get to the commercial in this last block. The header

was included so that if you give a copy of the program to your

friend, he or she will know where to find the documentation onhow

to use the assembler. If you ever had a program without the

documentation, you know how frustrating it is to use the program.

This is especially true with complex utilities like assemblers.

Therefore, this last block is important. (Also, it's a get-rich-quick

scheme to sell more books!)

4000 REM ******

4010 REM HEADER

4020 REM ******

4030 PRINT CHR$(147)

4040 CR$ = "(C) COPYRIGHT 1984" : NM$ = "BY

WILLIAM B. SANDERS"

4050 BK$ = "ASSEMBLY LANGUAGE FOR KIDS"

:CM$ = "COMMODORE 64"

4060 IS$ = "SEE" : F$ = "FOR DOCUMENTATION"

4070 H = 20-LEN(CR$)/2: PRINT TAB(H);CR$

4080 H = 20-LEN(NM$)/2 : PRINT TAB(H);NM$

4090 PRINT: H = 20-LEN(IS$)/2: PRINT TAB(H);IS$:

PRINT

4100 H = 20-LEN(BK$)/2: PRINT TAB(H);BK$

:H = 20-LEN(CM$)/2: PRINT TAB(H);CM$

4110 H = 20-LEN(NM$)/2 : PRINT TAB(H);NM$: PRINT

4120 H = 20-LEN(F$)/2: PRINT TAB(H);F$

4130 LD$ = "LOADING ARRAY" : FOR X= 1 TO 10 :

PRINT: NEXT: H = 20-LEN(LD$)/2

4140 PRINT TAB(H);CHR$(18);LD$

4150 RETURN

Phewwww! That sucker was long. Well, how many kids do you

know who wrote their own assemblers? Ifyou did all that work, you

won't understand everything about assemblers and assembly

language, but you'll be ahead of those who haven't. Congratula

tions! (Only real programmers write their own assemblers!!!) Save

42

the program under the name "KIDS ASSEMBLER 1." We'll call

the big one in Appendix A, "KIDS ASSEMBLER 2."

CREATING AND SAVING PROGRAMS

ON THE KIDS' ASSEMBLER

Onceyou get all the typing errors out ofyour assembler, you're all

set to crank it up. REMEMBER to make a back-up copy or two on

separate disks or tapes. If you've done that, then LOAD "KIDS

ASSEMBLER 1" and then enter RUN.

The first thing you will see when you RUN the program is the

following header:

(C) COPYRIGHT 1984

BY WILLIAM B. SANDERS

SEE

ASSEMBLY LANGUAGE FOR KIDS:

COMMODORE 64

BY WILLIAM B.SANDERS

FOR DOCUMENTATION

{LOADING ARRAY}

The message stays there until the array is loaded and lets you

know something is happening. After a few seconds your editor will

pop up. It looks like the following:

ADRS OPCODE OPERAND

PRESS {RETURN} TO DEFAULT TO 49152

STARTING ADDR?

At this point you are expected to enter a starting address for your

program. If you just press the RETURN key, your program will

automatically begin compiling at 49152 ($C000). Generally, this

43

area ofRAM is free for machinelanguage programs and I like to use

it. If you do not use a cassette tape, the cassette buffer at 828 ($33Q

is also a good place to use. Later on we'll discuss the various place

where you can put your code. For now, just press the RETURN key.

As soon as you do, your screen looks like this:

ADRS OPCODE OPERAND

PRESS {RETURN} TO DEFAULT TO 49152

STARTING ADDR?

49152 ?

The prompt under the OPCODE field is waiting for you to enter an

opcode. (What else?) Enter JSR and press RETURN. Now your

screen looks like this:

ADRS OPCODE OPERAND

PRESS {RETURN} TO DEFAULT TO 49152

STARTING ADDR?

49152 ?JSR ?

The prompt has jumped to the OPERAND field awaiting an

operand. Now, you can either enter the operand as a decimal or

hexadecimal number. If you choose to enter a decimal number, just

key in the number. For hexadecimal numbers, though, first put in a

dollar sign ($) and then the number. To get started, enter the value

58692 or $E544 and press RETURN. Both numbers are the same

and have the same effect. The hexadecimal to decimal subroutine

automatically changes $E544 to the decimal value 58692. It's a good

habit to start thinking in terms of hexadecimal. After you've done

that, you screen will appears as:

ADRS OPCODE OPERAND

PRESS {RETURN} TO DEFAULT TO 49152

STARTING ADDR?

49152 ?JSR ?$E544

49155 ?

44

You've successfully entered a line of assembly code, and your

assembler is waiting for the next line. That's all there is to it! Some

opcodes have no operands, but for the most part, you just enter the

opcode and the operand. The last line of your code should be RTS

to return control of your computer to BASIC once the program is

executed with a SYS command. It's not a very powerful assembler,

but it's easy to use and will catch many common errors that begin

ners make.

You may be wondering about the address field on the left side of

your screen. The first number was 49152 and the second is 49155.

Shouldn't it be 49153? What the assembler is doing is showing you

how much memory each opcode and operand is using. In the first

line you used three addresses or bytes. One byte was used for the op

code and two bytes were used for the operand. Thus, addresses

49152,49153 and 49154 have been used, and the next available ad

dress is 49155. This will help you see where your code is actually go

ing.

OK, let's end the program with RTS and RETURN. Now your

screen shows the following:

ADRS OPCODE OPERAND

PRESS {RETURN} TO DEFAULT TO 49152

STARTING ADDR?

49152 ? JSR ? $E544

49155 ? RTS

49156 ?

Since the RTS opcode used only a single byte and requires no

operand, you are now at address 49156. To end your work in the

editor enter 'Q' for 'quit' and press RETURN. You screen will clear

and you will be prompted with the following message:

SAVE PROGRAM(Y/N)?

Enter'Y' and press RETURN and you will see the next message:

ENTER FILE NAME?

45

Enter the file name CS (for Clear Screen, since that's what the

program does) and press RETURN. Now you will see:

ENTER FILE NAME? CS

PROGRAM IS 4 BYTES LONG

TO EXECUTE 'SYS' 49152

(B)EGIN AGAIN OR (E)ND?

If you press 'B' you will be immediately returned to the editor.

Since we've already seen the editor, press 'E' and RETURN to end

our little session with the Kids' Assembler. Your screen will look

like this now:

ENTER FILE NAME? CS

PROGRAM IS 4 BYTES LONG

TO EXECUTE 'SYS' 49152

(B)EGIN AGAIN OR (E)ND? {Press 'E'}

END

READY.

You're back in BASIC control of your computer. If you enter,

SYS 49152

and press RETURN your machine language program will execute.

Go ahead and do it to see what happens.

Now here's the really neat part about machine language. You

have two programs in memory at the same time. The assembler is

still in memory along with your little machine language program.

Just enter RUN {RETURN} to execute your assembler. Since your

BASIC program begins way down at 2048 ($800) and your

machine program is way up at 49152 ($C000), they won't conflict.

(Go tell your mother about that.)

46

SPECIAL CONVENTIONS IN OPCODES

Perhaps the biggest single problem with the Kids' Assembler is its

use of some non-standard opcodes notations. On the one hand,

these conventions were used to help you understand exactly what a

mnemonic opcode is in relationship to a machine language opcode.

On the other hand, it is a heck of a lot easier to write a relatively

short assembler in BASIC using the conventions I did! (Now you

know the awful truth.)

As we will see in Chapter 8, the 6510 has several different ad

dressing modes. On most assemblers, the modes are determined in

the operand field. For example the following shows the instructions

for loading the accumulator with a 5 in the immediate mode and ab

solute mode on most assemblers:

OPCODE OPERAND

LDA #5 ^-Immediate mode

LDA 5 -^-Absolute mode

The assembler can tell the first LDA instruction is in the immediate

mode since there is a pound sign (#) before the 5 in the operand
field. The second LDA instruction, however, is in the absolute
mode. The first LDA tells the computer to load the value 5 into the
accumulator. The second LDA, in the absolute mode, tells the com

puter to load the value from address 5 into the accumulator. What

actually happens when the code is turned into machine language is
that the machine opcode for the first LDA is stored as $A9 (169
decimal) and the second LDA is stored as SAD (173) decimal. Since
the mnemonic opcode can be translated directly into a machine op
code, by having the addressing mode as part of the mnemonic op
code, you can better see the translation going on. Therefore, in the
Kids' Assembler, you put the addressing mode as part of your op
code. Opcodes for the absolute, relative, and implied mode are ex
actly the same as on standard assemblers, but for other modes the
following conventions are used. (Don't worry about all the details
of addressing modes now. Later on in the book, we'll tackle each
one separately. Just take a look at the different conventions used.)

47

KIDS' ASSEMBLER

OPCODE

LDA#

LDA

OPERAND

5 -*- Immediate

5 ■+• Absolute

mode

mode

As you can see, the absolute mode on the Kids' Assembler is the

same as the standard ones. However, the pound sign (#) has been

moved from the OPERAND field to the OPCODE field in the im

mediate mode. The following is a full list of conventions you can

refer back to later when we cover the various addressing modes.

LDA

LDA#

TXA

BNE

LDA-Z

(JMP)

LDA-X

(LDA-X)

(LDA-Y)

Absolute mode (standard)

Immediate mode

Implied (standard)

Relative mode (standard)

Zero page mode

Indirect

Indexed

Indexed indirect

Indirect indexed

Basically, the differences lay in where you put the special sym

bols. I tried to make them consistent with the standard ones, and

simply place them with the opcode instead of the operand.

LOADING AND EXECUTING PROGRAMS

One of the best things about this assembler is the ease with which

you can load and execute machine language programs. From disk

all you do is to enter:

LOAD "PROGRAM NAME 49152",8,1

You then SYS the numeric value attached to the file name your pro

gram will execute. The program is automatically loaded to the start

address from which you saved the program. Also it will not disturb

a BASIC program in memory- (Well almost, anyway.)

48

Getting your programs loaded from tape takes a special loader

program. That's because it's stored as a SEQ file and you have to

first read the file and then POKE the whole thing into memory.

(The best way to solve this problem is to buy a disk drive.) It's no

problem though with the following cassette machine language
loader program.

10 PRINT CHR$(147)

20 INPUT "NAME OF FILE TO LOAD "; NF$

30 INPUT "ADDRESS TO LOAD"; SA

40OPEN1,1,0,NF$

50 INPUT#1,NB

60 FOR X = SA TO SA + (NB-1)

70 INPUT#1,CD

80 POKE SA.CD

90 NEXT X

100 CLOSE1

Then just SYS the beginning address you entered when prompted

ADDRESS TO LOAD?

READING SOURCE FILES

Since a SEQ source file is saved with the object file in this version

of the Kids' Assembler, you will need a program to read your

source code. The first of the following two is for disk and the se

cond is for tape:

SOURCE CODE READER DISK

10 PRINT CHR$(147)

20 INPUT "FILENAME ";NF$

30NF$ = "0:"+ NF$ +",S,R"

40 OPEN9,8,9,NF$

50 INPUT#9,A$

60 PRINT A$

70IFST = 0THEN50

80 CLOSE9

49

SOURCES CODE READER TAPE

10 PRINT CHR$(147):X = 0

20 INPUT "NAME OF SOURCE FILE ";NF$:

NF$=NF$ + ".S"

30OPEN22,1,0,NF$

40 INPUT#22,A$,B$,C$

50 PRINT A$,B$,C$

60 A$ = "":B$ = "":C$ = ""

70IFST = 0THEN40

80 CLOSE22

The above programs will print your sources to the screen so that

you can see how you programmed your object code. It cannot, un

fortunately, be loaded into your editor and reused.

SOME EXAMPLES

Before going on the Chapter 3, crank up your assembler for some

test runs. This will give you further checks on typos in your pro

gram and show you that assembly language isn't impossible.

ERROR TESTS

ADRS OPCODE OPERAND

49152 ? XYX

{ERROR}

49152 ? LDA# ? 500 <*- Enter 0 on second try

{ERROR - MUST BE LESS THAN 256}

49154 ? LDA ? $FFFFA

{VALUE OVER 65535 ($FFFF)} ? 828

49157 ? Q

The above program just tested the error traps built into your

assembler. There's nothing worth saving; so just go back to the

beginning.

50

BACKGROUND, BORDER AND CHARACTER COLORS

ADRS

49152

49155

49157

49160

49162

49165

49167

49170

49171

OPCODE

?JSR

?LDA#

?STA

?LDA#

?STA

?LDA#

?JSR

?RTS

?Q

OPERAND

?$E544

?0

? $D021

?4

? $D020

?5

? $E716

When you SYS 49152 after you've exited the assembler, your
background will turn black, your border purple and your characters
white. If it worked, go on to Chapter 5. If it didn't, try it again and

make sure everything looks as it does above. If it still doesn't work,

check your BASIC assembler program, especially the DATA in the
opcode block.

51

52

CHAPTER 3

THE MERLIN 64 ASSEMBLER

Using the Editor/Assembler

This is the best assembler I've seen for the Commodore 64. It

only works with a disk system; so ifyou have cassette storage, you'll

have to wait until you have a disk drive to use this one.

First of all, make a back-up copy of the Merlin Assembler and

put the original in a safe place. Using the back-up master, enter the

following:

LOAD "MERLIN",8

When it's loaded, enter RUN, press RETURN, and patiently wait

while the program is cranked up. (It takes a while.) Remove your

back-up master and put in your work disk. This should be a format

ted disk that you can afford to destroy. It is possible to accidentally
write a machine code program that will cream your disk. (I do it all
the time.) In fact, it's a good idea to have two work disks; one to

keep in the drive while you're experimenting, and one on which to
save your source and object code.

53

The program starts in the "Executive Mode." You will see the

following on your screen:

{MERLIN}

By Glen Bredon

C :Catalog

L :Load source

S :Save source

A:Append file

R :Read text file

W :Write text file

D:Drive change

E :Enter ED/ASM

O :Save object code

G :Run program

X :Disk command

Q :Quit

Source: $0AO(D,$0A0

Drive: 8

From the Executive Mode, you can do a lot of house-keeping.

The first thing to do is to initialize your work disk.

Press X

The prompt will then show:

%Command:

Just enter "i" and press RETURN.

To see what's on the disk, press C for "Catalog." Your file direc

tory will appear on the screen. There's nothing more to do in the

54

Executive Mode for the time being; so hit RETURN and enter the

Editor/Assembler by pressing *E\ Your screen will look like this:

Editor

This is called the Command Mode. From here, you want to get

into the Add/Insert Mode. This is where you begin writing your

assembly language code. You can recognize it by the colon (:)

prompt. To get to the point where you can start writing assembly

programs, enter;

:A {RETURN}

As soon as you hit RETURN after entering the 'A' you're in the

"Add Mode." It is in this mode where you will be doing most of

your work. The number 'V will pop up, representing your first line

number.

Editor

:A

1

As in most assemblers, Merlin has four fields:

LABEL OPCODE OPERAND COMMENT

Each time you hit the space bar, you go to the next field. For the

most part, the OPCODE and OPERAND fields are the most im

portant. When we get to branches, the LABEL field becomes very

important, and as we will see in later chapters, it is used extensively

for defining special locations and addresses as well. In our examples

in this chapter, we will show you how to use all four fields. To get

started, though, just try the following little program using the OP

CODE and OPERAND fields:

LN# LABEL OPCODE OPERAND COMMENT

1 JSR $E544
2 RTS

55

To enter the routine, enter the Add Mode, and as soon a the T

appears do the following:

Step 1: Press the space bar to jump to the OPCODE

field and enter JSR.

Step 2: Press the space bar again to jump to the

OPERAND field and enter $E544. Now press the

RETURN key to go to the next line.

Step 3: When the '2' appears, press the space bar to

jump to the OPCODE field and enter RTS.

Step 4: Press RETURN twice. The first RETURN will

take you to the next line number, and the second

RETURN will take you out of the Add Mode and back in

to the Command Mode. Pressing RETURN twice

without pressing any other key will always take you out

of the Add Mode.

The following shows how your screen should look now:

Editor

:A

1

2

JSR

RTS

$E544

At this point, all the information you need for your assembly

language program is in the editor. In order to get in into a form you

can execute as a program, you must assemble it. To do that, from

the Command Mode, you enter,

:ASM

and press RETURN. You will be prompted,

:ASM

Update source (Y/N)?

You do not want to update the source code; so you press 'N\ and

your code will be assembled. Your screen now looks as follows:

56

:ASM

Update source (Y/N)?

Assembling

8000: 20 44E5 1 JSR $E54

4

8003: 2 RTS

—End assembly, 4 bytes, Errors: 0

Symbol table - alphabetic order

Symbol table - numerical order

If that's what your screen looks like, you've just successfully

assembled your first program on Merlin. Next we will want to save

the program to disk, get out of Merlin, and then see if the program

runs. Before we do that, though, make a note ofthe first number in

the assembled code. It is the hexadecimal value $8000, shown on

your screen simply as 8000. This is the address where your object

code (your assembled machine language program) will load. It's

decimal value is 32768, and once your program is loaded, SYS

32768 will be used to execute it.

Now press 'Q' for quit and you will be returned to the Executive

Mode. The '%' prompt appears enter,

%S

Your screen will show:

%Save:

Be sure your work disk and not your master is in the drive and enter

a file name ('dear' is a good name since that's what the program

will do - clear your screen), and press RETURN. Your screen will

show:

%Save:clear

Saving clears

57

After saving the file, your screen will clear and you will be back in

the Executive Mode. Now, you have not saved anything that will

execute. You have just saved the source code. (Merlin put the ' .s' on

the end of your file name to distinguish it from the object code.)

This file has all the information you entered in the editor, but it did

not save the assembled code. To save what you assembled, called

the "object code," enter 'O' after the '%' prompt. (Make sure

that's an 'Oh' and not a 'Zero'.) When you do that your screen will

look like this:

%Object:clear

Since you just saved the source code for a program named 'clear',

Merlin assumed that the next file you want is an object code called

'clear'. You do and so just press RETURN without entering any file

name.

%Object:clear

Saving clear.o

Now you have saved both your source code and object code.

When you look at your disk's directory with the 'C command, you

will see a file named 'clear.s' and one named 'clear.o'. (Later when

you're not using Merlin and have your keys set for upper case, the

files will appear as 'CLEAR.S' and 'CLEAR.O'.)

Now, before we leave Merlin, take a look at the right side ofyour

screen. There you will see the addresses with your source and object

codes.

Source: $0A0,$0A10

Drive: 8 Object: $8000,$8004

In case you forgot to note the load address of your object code

after you assembled it, it is supplied here for you.

Let's get out of the Executive Mode and back to BASIC. Press

'Q' and when asked 'Do you really want to exit?', press 'Y' for

"Yes." Your screen will clear and you will be notified that to re-

enter Merlin use SYS 52000.

58

Once you're back in BASIC

you can execute your program.

When you entered ASM to

assemble it in Merlin, it was

placed in memory at location

$8000 (32768). Therefore, if

you SYS 32768 and press

RETURN, your program will

execute. Go ahead and try it. If

you did everything right, your

screen should clear. See how

easy that was?

EDITING YOUR SOURCE

CODE WITH MERLIN 64

To get back into the

editor/assembler, just enter,

SYS 52000

r/

Use the editor
to make changes

and press RETURN. You'll be returned to the Executive Mode in

Merlin. Now, choose 'E' to enter the ED/ASSEM. As soon as

you're in the Command Mode indicated by the colon (:) prompt,

press 'V and RETURN. Your source code should be there waiting

for you. The 'L' (L)isted your program; so now you know one of

the first editing commands. Whenever you want to see your source

code in memory, just press 'L' in the Command Mode. Now, let's

take a look at the major editing commands. We'll start with a list of

the most important ones, and then show you how to use them.

EDITING COMMANDS

L Lists source code

A Enter editor at next available line number

l# Insert code into line number #

D# Delete line number #

E# Edit line number #

PORT# Selects printer as output port #

59

PRTR# Sends formatted listing to printer in

port#.

F Find a string in listing

C Change string

M Move lines of code

R Move lines in one range to another

section

NEW Clears source code from memory

L(ist). We've already seen how to list a source code with L.

However, when your programs get longer, you may want to stop

the listing to examine a certain section. Whenever you press the

space bar during a listing, you can step through the listing one line at

a time. To resume normal listing, press RETURN.

A(dd). When we first started writing our program, we pressed

'A' from the command mode and got a 1. With your program in

memory, press 'A' and you will be given the next available line

number. Having used only 2 lines, if we now press 'A' we'll start at

line 3.

I(nsert)#. This command is used to (I)nsert lines between lines.

With your 2 line program in memory, enter II {RETURN}. You

will now be in line 1. Press the space bar and enter the following:

ORG $C00O

Press RETURN twice to get back to the Command Mode and press

L to list your program. Now it looks like this

1

2

3

ORG

JSR

RTS

$C000

$E544

The ORG instruction is a "pseudo-opcode." It is not assembled in

to object code, but instead it identifies the beginning address for

your code. If you do not put an ORG in your program, it defaults

to the beginning address $8000. It should be the first line of code in

your programs. As you learn programming in assembly language,

you will be leaving out a lot ofcode, and it will be necessary to insert

60

code between line numbers. Therefore, you will be using the (I)nsert

function a good deal.

D(elete)#. This is really simple to use. You just enter D and the

line or range of lines you want to get rid of and hit RETURN. Since

we don't have any lines in our program to delete, let's stick some

there to knock out. Do the following:

:A

4OINK

5 BURP

6 CRASH

Deleting
unwanted code

After you enter line 6, hit RETURN twice to get back to the Com

mand Mode. Lines 4, 5 and 6 are pretty worthless. List your pro

gram and you'll see them all there at the end of your listing. Now

from the Command Mode, do the following:

:D6

Press RETURN and press L to list your program. Line 6 has been

(D)eleted. Now to delete a range of lines enter:

:D4,5

Hit RETURNtwice and list your program again. All ofthose dumb

lines are gone.

E(dit)#. To change a line, press E and the line number to edit

from the command mode. Let's change our ORG from $C000 to

$033C. Do the following:

:E1 {RETURN}

1 ORG $C000

61

Press the space bar to jump to ORG and then using the right cursor

key, move over the ORG and hit the space bar again. The cursor

should be right on top ofthe dollar sign ($) ofthe $C000. Move one

space to the right with the cursor key and replace $C000 with

$033C. Press RETURN and you're back in the Command Mode.

While in the edit mode you can (I)sert and (D)elete characters

with CTRL-I and CTRL-D. To try out these editing functions, let's

edit Line 2.

:E2

2 JSR $E544

Move the cursor over the'S' in JSR and press CTRL-D. The'S' will

be deleted. Now to get the'S' back between the T and the 'R' put

the cursor over the 'R' and press CTRL-I and enter 'S\ Experiment

with inserting and deleting code since you'll be doing a lot of editing

in assembly language programming. Here's a few more Edit Mode

CTRL commands to use:

CTRL-F Find a character

CTRL-0 Like CTRL-I except it inserts control character

CTRL-P This is really a neat command for putting a line

of asterisks across your screen. Use it for your header

blocks. If you hit the space bar and CTRL-P, you'll get

asterisks (*) on either side of your line.

STOP/RUN Gets out of the Edit mode without changing

the line you've edited.

CTRL-B Jumps to beginning of line

CTRL-N Jumps to end of line

CTRL-R Restores the line to its original state

CTRL-A Erases the line from the cursor to the right

PORT# PRTR#. If you have a printer hooked up to your

Commodore-64, you can send output to it using either the PORT or

PRTR commands.

If you use PORT, specify it as PORT 2, PORT 4 or PORT 5.

When you ASM your source code, you will be able to see all the in

formation about it printed on paper. This is useful for debugging

62

programs. To get it going, from the Command Mode, enter the

following:

:PORT4

Press RETURN and your output will be vectored to your printer.

The PRTR command works almost the same as PORT but it for

mats the output to your printer to include page breaks. Since you

really won't need this command until your programs are longer

(over 60 lines or so), you'll either have to enter a big program or

wait until you are more advanced. Here's an example format

:PRTR 4 "MAY 8,1990" 1

The string is your page header and the number at the end is your

page number. The *4' refers to a channel to your printer port just

like with the PORT command.

F(ind). When you start having longer listing, this command is

really handy. From the command mode, you enter something like,

:F "JSR"

press RETURN, and all lines with JSR in it will be listed to the

screen. If you enter the range of lines before the string you're sear

ching for, just that range will be listed.

:F 5,9"JSR"

C(hange). This command is good for wholesale mistakes. For ex

ample let's say you have a program with JMP opcodes instead of

JSR opcodes as you really wanted. With the change command, you

can change all of the JMP's to JSR's from the Command Mode.

Here's how to do it:

:C "JMF'JSR"

Take special note of how we used the quotation marks (")• There

are three of them instead of four (two around each string.) When

63

you press RETURN, you will be asked whether you want A01) or

S(ome) of the strings changed. If you press'A' for all, every single

instance ofthe change will be made, while if you enter'S' for some,

you will be given a choice at each instance to make the change or not

by entering 'Y' for "Yes you want the change" and RETURN if

you do not want to change. You can change single lines or line

ranges by putting a single line number or range (e.g. 4,19) right after

the C. Try it out with our little program in memory.

:C"JSFTJMP"

Press RETURN, and list the program. The JSR in line 1 is now

JMP. To turn it back to JSR, from the Command Mode enter,

:C "JMP'JSR"

and press RETURN.

COPY. Sometimes you will write some code and want it repeated

elsewhere in your program. Instead ofhaving to key it in again, you

can use the COPY function to do it automatically. Try the follow

ing with our two-liner in memory (If you have a 3-line program in

memory, get rid of the first line with Dl {RETURN} using the

D(elete) function.)

:COPY 1 TO 2

Press RETURN and list your source code. It will now look like this:

1 JSR $E544

2 JSR $E544

3RTS

The COPY function placed Line 1 where Line 2 was and moved

Line 2 to Line 3. You can also move code upwards. Let's put Line 3

in Line 1.

:COPY3TO1

64

Now your listing looks like this:

1 RTS

2 JSR $E544

3 JSR $E544

4 RTS

You can also move a range of lines by specifying the range and the

line where you want to insert the range. For example,

:COPY 10,20 TO 33

will duplicate the range of lines from 10-20 where Line 33 is. You

probably won't be using this function a lot at first, but it sure saves

a lot of time when you do need it.

MOVE* This function is just like COPY but it deletes the original

line or range after it MOVEs it. This is handy when you find you

have a line in the wrong order. To see how it works, using the

D(elete) function, get rid of those lines in our program we added

with the COPY function. (Dl {RETURN} and D2 {RETURN}).

Now enter the following and press RETURN:

:MOVE 2 TO 1

When you list your program it now looks like this:

1 RTS

2 JSR $E544

Let's see if you can get it back to the original order using MOVE.

(I'm not telling you how.)

R(eplace) The R(eplace) command is something like the D(elete)

command except it puts you into the Insert Mode in the line you are

replacing after first deleting the line. For example, enter the follow

ing and hit RETURN:

:R2

65

You will find yourself in Line 2. Hit the space bar and enter ABC as

an opcode. (There's no such opcode is used simply for illustration.)

When you list your program, it will look like this:

1 JSR $E544

2 ABC

Now using the R(eplace) function, see if you can change the ABC

back to RTS.

Finally, there are some miscellaneous other editing functions of

Merlin you should understand. If you have a program in memory

and you want to get rid of it, just enter NEW as in BASIC from the

Command Mode. To toggle upper and lower case while in the

Add/Insert mode, press the F7 function key. (You don't want

lower case characters in the Command Mode.) Finally, to convert

decimal numbers to hexadecimal numbers or hexadecimal numbers

to decimal numbers from the Command Mode just enter the

number you want converted and press RETURN. For example to

convert hex to decimal, preface your number with a dollar sign ($).

Let's say your program loads at $C000 and you want to know what

the SYS value is. Do the following:

:$C000 {RETURN}

49152 = -16384

You can SYS either number 49152 or 16384 to run your machine

language program after it's loaded into memory. To convert from

decimal to hexadecimal try the following:

:1234

$04D2

You'll find this function very useful in converting back and forth

between hexadecimal and decimal values.

66

LOADING AND RUNNING PROGRAMS

There are at least three ways to load and execute machine

language programs created with Merlin. The easiest way is to

LOAD the program from BASIC and then SYS the beginning ad

dress of your program. You have to use a special LOAD format,

however.

LOAD "MACHINE PROG",8,1

Normally when you LOAD a BASIC program, you just enter,

LOAD "BASIC PROG",8

With machine programs, however, you have to add the \V after

the '8'. The',V tells the program where to load in memory. The on

ly problem with this method is remembering what the starting ad

dress of your program is. One trick I use when saving object code is

to append the starting address to the end ofthe file name. So instead

ofjust saving "MAC CODE", I'll name it "MAC CODE $C000"

or "MAC CODE 49152" so that when I load it from BASIC I'll

know what value to SYS.

Another way to execute object code is from Merlin. From the Ex

ecutive Mode just choose 'G' for "Go!" and enter the object code

file name when prompted with Run:. DONOT put the' .o' extender

on the name. Merlin does that automatically for you. The problem

with this method is that you'll be popped back into the Executive

Mode after the program executes. Also, if the code conflicts with

the memory used by Merlin, you may crash!

Finally, you can load the source code, and then using ASM from

the editor, assemble your code. Then just exit Merlin and SYS your

program. This is a good method when you're still working on a pro

gram, since you can de-bug it by re-entering Merlin and working on

the source code.

67

THE SOURCEROR

If you've been accumulating machine code programs on

assemblers that do not save the source code, such as the Kids'

Assembler or you have the object code but not the source code from

a file, the Sourceror is going to be very valuable. It creates source

code from object files, including labels!

To crank up the Sourceror enter,

LOAD "SOURCEROR.O",8,1

press RETURN and when the program is loaded enter,

SYS 49152

You will be prompted with the following:

Do you want an object file loaded?

(Y/N):

Take out your Merlin Master disk and put your work disk in the

drive. Now press "Y" and when prompted, enter the name of your

object file. Be sure to enter the full name, including any <.o> ex

tender. Press RETURN and your program will be loaded. You will

be told that start address and prompts what to do next. Make a note

of the starting address of your program. Then you will be given a

page of instructions of what to do. Enter the hexadecimal value of

the beginning of your program and press the '1* key. (That's the

lower case *L\) For example, ifyour program begins at $C000, you

would enter the following:

C000I

Press RETURN and your program will be disassembled. Find the

end of your program, usually by locating an RTS instruction, and

enter the hexadecimal address below the last instruction in your

program and press 'q' for quit. For example, let's say your RTS is

68

at address $C0D0 and the next line, $C0D1, looks like garbage,

you would key in,

C0d1q

and press RETURN.

The program will process your data and ask you for a file name.

DO NOT add the '.s' extender to your file name since Sourceror

does that automatically. You have just saved the source code for

your object code! Now you can load and run Merlin and look at the

source code in your editor.

Once you load your Sourceror created source file in Merlin, list

it. You will notice that some of the hexadecimal numbers are

prefaced by an "H". This simply means they are (H)exadecimal

numbers. Using your editor, replace the H's with a dollar sign and

you're all ready to assemble it into a clear source file. You can add

labels and comments if you want as well. The following shows what

a source file might look like and how to change it.

1

2

3

4

5

ORG

JSR

STA

RTS

$C000

HE544

HD021

In lines 3 and 4, change the HE544 and HD021 to $E544 and

$D021. When you're finished, your code should look like the

following:

1

2

3

4

5

ORG

JSR

STA

RTS

$cm

$E544

$D021

Also, you might have some garbage at the end of your file. Just

use the (D)elete function from the command mode to get rid of it.

ASM your code and save it as a new source file.

69

MERLIN'S MONITOR

To test run your assembled programs, the monitor in Merlin is

quite handy. To enter the monitor from the Command Mode,

enter,

:MON

and press RETURN. You will be given a '$' prompt to indicate

you're in the monitor. All values are expected to be given in hex

adecimal. (The prompt will remind you of that.)

The best way to use your monitor as a test bench is to leave out

the ORG directive in any program you're testing. In this way, the

default ORG of $8000 will be used and the monitor, editor,

assembler and your code can be co-resident in memory. Once you

have ASseMbled your source code, enter the monitor, key in,

and press RETURN. (Remember the dollar sign ($) is the prompt;

so you don't have to include it.) Your program will now execute.

Once your program is debugged you can use any ORGyou want by

inserting it in your source code and re-ASseMbling it.

You can do a lot more with the Merlin monitor, but our main

purpose is to use it as a test bench. Take a look at your Merlin

manual for its other uses. To get back into your Editor, enter Y

and press RETURN. If you enter 'q' {RETURN} you'll be return

ed to the Executive Mode.

SOME EXAMPLES

To get you rolling, let's look at a couple simple examples.The

first one just clears your screen and changes the printing characters

from blue to black. Actually, it works about the same as using

CHR$ codes to put things on your screen.

70

1

2

3

4

5

6

7

8

9

ORG

JSR

LDA

JSR

LDA

JSR

LDA

JSR

RTS

$C000

$E544

#144

$E716

#65

$E716

#66

$E716

;Jumps to clear

routine

;Jumps to screen

output

;Returns from

subroutine to BASIC

:ASM

When you are finished assembling the program, enter 'Q' to

return to the Executive Mode and then save both the source file and

object file. When you load and execute the program it will print

black letters, AB in the upper left hand corner of your screen.

This next program changes your background color to black, your

border to purple and prints white letters. There's a trick involved.

Notice that Line 2 is blank. To get blank lines with Merlin, you have

to hit the space bar once when you come to a new line and then

RETURN. (If you just hit RETURN without the space bar, you'll

go into the Command Mode.)

1 ORG

2

3 START JSR $E544

4 LDA #0 ;Color code for black

5 STA $D021 ;Store in background

reg.

6 LDA #4 ;Color code for

purple

7 STA $D020 ;Store in border reg.

8 LDA #5 ;ASCII control code

for white letters

9 JSR $E716 ;Output to screen
10 END RTS

:ASM

71

You're not expected to know how this works, but you soon will.

The START and END labels really don't do anything in this exam

ple, but later we'll see how easy they can make life in assembly

language programming.

72

CHAPTER 4

THE COMMODORE 64

MACRO ASSEMBLER

DEVELOPMENT SYSTEM

THE PARTS

To understand the Commodore assembler package, the first

thing to understand is that it is in several parts. When you load one

part, you do not necessarily have access to another. That is, you

have to separately load the various files that make up the package.

The major elements of the package include the following:

1. EDITOR64

2. ASSEMBLERS

3. CROSSREF64

4. LOLOADER64

5. HILOADER64

6. MONITOR$8000

7. MONITOR$C000

The disk version also includes the DOS WEDGE64, a disk

operating system. The most relevant items are EDITOR64,

ASSEMBLER64 and the two loader programs. We'll discuss their

use in detail with only secondary attention to the other files. Since

editing code works a lot like editing a BASIC program, it's a good

idea to load the DOS WEDGE64 and use it just as you would when

73

programming in BASIC. The easiest way to do that is to LOAD

"BOOT ALL",8 and then RUN it.

EDITOR64

You write your assembly language programs in the EDITOR64

mode, save the source code to disk and then assemble the code with

ASSEMBLE64. Since these two operations require two different

files, we will treat their operation as two distinct events. To start,

enter the following:

LOAD "EDITOR64",8,1 {RETURN}

SYS 49152

After you do that, your screen should look like this:

COMMODORE 64 EDITOR V07282

(C) 1982 BY COMMODORE BUSINESS MACHINES

READY.

It looks like nothing has happened, but you are all set to start

writing assembly language code. You do this by entering line

numbers just as in BASIC. The four fields are:

1. Label

2. Opcode

3. Operand

4. Comment

They are arranged as follows:

LABEL OPCODE OPERAND ;COMMENT

The COMMENT field is indicated with a semi-colon before the

comment. Each time you want to go to a different field, you

simply0press the space bar. We will use line numbers beginning

with 10 and incremented by 10. This will give us room to insert code

if we need it. To get started enter the following:

AUTO 10 {RETURN}

74

Nothing will appear to happen at this point. Now, just start writing

code beginning with line 10.

10 JSR $E544

Put two spaces after the line number and one space after JSR. As

soon as your press RETURN, your screen should look like this:

10JSR$E544

2©

The new line number, 20, automatically pops up. You are in the

LABEL field; so press the space bar to get into the OPCODE field

and enter the following:

10 JSR $E544

20RTS

You have just written a complete (but small) assembly language

program. The first line jumps to a built-in subroutine to clear the

screen and the second line returns you to BASIC. However, the

Commodore assembler requires a special pseudo-opcode at the end

of all programs, .END. So press RETURN and enter the following:

10 JSR $E544

20RTS

30 .END

Now when your code is assembled with ASSEMBLER64, it will

know the end of the program. However, it also needs the beginning

of the program. Since the beginning should be at the beginning, we

will insert a line just as we can do in BASIC. So enter the following

line:

5*=$C000

15 ^Just press RETURN when you get the 15}

75

Now LIST your program and it should read:

5 *=$C000

10JSR$E544

20 RTS

30 .END

READY.

The asterisk (*) is the symbol used to define the starting address of

your program. (Many assemblers use ORG as a psudeo-opcode in

stead of the asterisk.) The dollar sign ($) in front of the address in

dicates it is a hexadecimal value. You could have entered,

5 * =49152

if you wanted a decimal value.

Next, since this still doesn't look very much like an assembly

language program, let's format it. Just enter,

FORMAT

and press RETURN. Your program now appears as this:

5

10

2©

30

*=$C000

JSR $E544

RTS

.END

READY.

As you write your code, it is a good idea to FORMAT it every now

and then so that you can better see the separate fields. We have not

put anything in the LABEL field yet, but if we did, the spaces bet

ween the line numbers and OPCODES would have our labels.

Similarly, if you add a comment, it too will be formatted to the cor

rect field.

Since we inserted our starting address for the code, our line

numbers are out of whack. We can reNUMBER them with the

NUMBER command. Do the following:

76

NUMBER5,10,10

{RETURN}

After NUMBER the first

number is the old start line, the

second number is the new start

line and the last number is the

step size. So, since our old first

number was 5, and we wanted

our new first number to be 10

and we wanted our line numbers

incremented by steps of 10, we

used the 5,10,10 combination.

Just remember the format for

NUMBER as:

NUMBER(Old start),

(New start),(lncrement)

I'd like to renumber
please.

Now when you LIST your program it looks like this:

10*=$C000

20 JSR $E544

30RTS

40.END

READY.

= =MAKING A HEADER = =

While you're learning assembly language, it might be a

good idea for you to make a header that describes the dif

ferent fields for you. You could put in Line 1 something
like the following:

1 LABEL OPCODE OPERAND ;COMMENT

When you FORMAT your code, these fields will line

up over your code to show you if you have your labels,

opcodes, operands and comments in the correct places.

Before you save your program to disk, just delete Line 1

so it will not be assembled and mess up your object code.

77

Now your program is all set to assemble into object code. (Object

code is the machine language code that will run.) To do this you

have to first put your source code (the code you just wrote) onto

disk. Rather than using the SAVE command, you use PUT or

CPUT. So let's try it.

PUT'TESTLS"

You can optionally include parameters for starting line, ending line,

device number (the default is 8, your disk drive) and the secondary

address. If you use CPUT instead of PUT, your file will be more

compact on your disk. (Think of it as CompactPUT.)

At this point you can assemble your program. You are finished

with everything you have to do in the EDITOR64. However, let's

look at the other editing features before we go on.

For the most part, you edit assembly source code just as you

would a BASIC program. Thus, there are no special editing com

mands for normal source code editing. However, there are some

very useful added editing functions in EDITOR64. Let's look at

them.

= =DOS WEDGE64 HELPS A LOT= =

It's a very good idea to load your DOS WEDGE64 when

you're working in the editor. With it, you can look at

your directory without destroying your program in

memory. Thus when PUTting a file to disk, you can first

look at the disk directory with > $ to see what file names

are taken up already. When you GET a file from disk,

you can check to see if the file name you want is on the

disk.

78

Look at your directory to make sure your source code is saved as

a SEQ file and then enter NEW to clear memory. Now, using the

GET statement, we'll see how to load source code from your disk.

Enter,

GETTEST1.S" {RETURN}

Your program will be loaded to disk, and you can LIST it. When

you do, you'll see the following:

1000*=$C000

1010 JSR $E544

1020 RTS

1030 .END

READY.

As you can see, your lines now start at 1000 instead of 10. Your

editor automatically does this for you. (Don't ask me why.)

Anyway, when you're working on source code, you can save a part

of it and then re-load it with GET and continue your work.

ADDED EDITING FUNCTIONS ON EDITOR64

CHANGE. Sometimes you will want to make a lot of changes in

your program. To do this quickly with a single string, the

CHANGE command is very helpful. Let's say you accidentally us

ed LAD instead of LDA. The CHANGE command would go

through your program and change all instances of LAD to LDA.

Using your program in memory, we'll change JSR to JMP. Do the

following:

CHANGE/JSR/JMP/ {RETURN}

1010 JMP $E544

The changed line pops up showing you that your JSR is now JMP.

With just one change, it's probably just as easy to edit as you would

in BASIC. However, when you have several opcodes, labels or

other strings to change, you will really appreciate this function.

79

DELETE. This command would be handy with BASIC pro

grams. If you want to get rid of a range of lines, you just enter, for

example,

DELETE 1010-1030 {RETURN}

and lines 1010-1030 will be deleted. This is very helpful when you

find a way to tighten up your code and you want to get rid of extra

lines. All you have to do is enter the first line to the last line of code

you want DELETEd.

FIND. When your programs get really long and you want to find

a string, the FIND command is a big help. (If you DELETEd your

lines in the above example, you better GET "TEST1.S" back into

memory.) Enter, for instance,

FIND "RTS" {RETURN}

1020 RTS

Notice that the FIND command requires quotation marks around

the string you are trying to find, while the CHANGE command

does not want the quotation marks.

Finally, if you want your EDITOR64 out of action, just enter

KILL {RETURN}. You can get it back with SYS 49152. That's

about it for editing. Remember, you edit most of your code just as

you would a BASIC program. The added editing commands simply

make it a lot easier for you.

ASSEMBLERS

Now that you have your source code saved as TEST1 .S, you are

ready to assemble it with ASSEMBLE64. To get started do the

following:

LOAD "ASSEMBLER64",8 {RETURN}

RUN {RETURN}

80

Unlike the EDITOR64, you do not have to SYS an address to get it

up. You just RUN it. As soon as you RUN the program you will

see,

CBM RESIDENT ASSEMBLER V080282

(C) 1982 BY COMMODORE BUSINESS MACHINES

OBJECT FILE (CR OR DrNAME)

Now BE CAREFUL here! You are asked to enter the name for the

OBJECT file. You saved the SOURCE file to disk under the name

TEST1.S, and you DO NOT want the same name for your OB

JECT file. Enter the name TEST1.O and hit RETURN. By using

the extenders *.S' for source files and *.O' for object files, you won't

get into as much trouble.

Next you will be asked,

HARD COPY (CR/Y OR N)?

If you have your printer hooked up, enter Y or just press

RETURN. Ifyou do not have a printer hooked up and on-line enter

N and press RETURN. Next you will be asked,

CROSS REFERENCE (CR/NO OR Y)?

You won't need a cross reference until you get into more com

plicated programs; so enter N or just RETURN.

Now you will be asked the SOURCE file name.

SOURCE FILE NAME?

You saved your source file as TEST1 .S so enter that name and press

RETURN. Your screen will show the following:

PASS1

TEST1.S PAGE 0001

LINE# LOC CODE LINE

PASS2

81

00001

00002

4

00003

00004

ERRORS :

0000

C000

C003

= 00000

END OF ASSEMBLY

READY.

20 44E5

*=$C000

JSR $E54

RTS

.END

If that's what you got, you correctly entered and saved your

source code, assembled your object code and saved the object code

to disk in a SEQ file. Look at your directory to make sure. You

should see both "TEST1.S" and "TEST1.O". If you did not get

that, then enter SYS 49152 to get back into the editor, GET your

source code, make corrections and try it again.

LOADERS

One thing I'm not crazy

about with this assembler is the

way object code is loaded and

executed. Most object code can

be loaded with LOAD "FILE

NAME",^! and then SYS the

load address. However, since

the files are stored as SEQ files

instead of PRG files, that's not

possible. (It is nice for cassette

users though.) You have to load

either LOLOADER64 or HI-

LOADER64. If you load your

program in higher memory loca

tions, such as we did at $C000

(49152), use the LOLOADER64

since it will place itself in a posi

tion that will not conflict with

the code up in $C000. (It loads

at $800). If your code is in a

HI LOADER

LOLOADER

82

lower address, such as the cassette buffer at 828, then use the

HILOADER64. To crank them up you have to use two different

formats:

LOAD "LOLOADER64",8,1 {RETURN}

RUN {RETURN}

LOAD "HIGHLOADER64",8,1

SYS 51200

Let's do it and see if our program works. Load the LOADER64

and RUN it. Your screen will look like this:

LOLOAD.C64 V072772

(C) 1982 BY COMMODORE BUSINESS MACHINES

HEX OFFSET (CR IF NONE)? {RETURN}

OBJECT FILE NAME? TEST1.0 {RETURN}

C000

C003

END OF LOAD

READY.

The HEX OFFSET refers to the number you want to add to your

load address. If you wanted to load your program at $C200 and it

was already at $C000, your HEX OFFSET would be $200. Just

press RETURN since we want it to load at $C000 (49152). Enter

the filename, TEST1.0, press RETURN and you will see the begin

ning address of your program and the end of it (C000-C003). Now

we're all set to give it a go. Hold your breath and enter,

SYS 49152

If your screen clears and all you can now see is the READY, pro

mpt, your program works. If it locks up your screen, blows out the

windows and sets your hair on fire, try again.

THE MONITORS

Like your loaders, the Commodore assembly language package

comes with two monitors. MONITOR$8000 loads in the low por-

83

tion of RAM and MONITOR$C000 in the high portion. Load the

monitor in the low portion of memory and we will use the high

RAM for some examples.

First of all, you may be wondering what a monitor is. Basically, a

monitor is a device that allows you to examine and change your

code in memory, usually in hexadecimal values. Monitors also

enable you to disassemble machine language programs in memory

and see the status of the various registers in your microprocessor.

(We'll discuss registers in Chapter 6.)

Your Commodore monitors can also be used as assemblers,

ANDthey can save machine code as PRG files. This means that you

can load these files directly from BASIC without having to use the

loader programs. (Why didn't they do this with ASSEMBLER64?!)

Therefore, if you want to assemble your code so that it can be

stored as a PRG file, you can use the mini-assembler in your

monitor to write assembly programs.

First, LOAD "MONITOR$8000",8,1 and SYS 32768. When

you first get into your monitor, you will see the following:

8*

PC

-803E

SR

32

AC

00

XR

83

YR

84

SP

F6

The period (.) is your monitor prompt, awaiting your command.

The PC, SR, etc. at the top refer to:

1. PC = Program counter

2. SR = Status register

3. AC = Accumulator

4. XR = X register

5. YR = Y register

6. SP = Stack pointer

The values of the various registers is the number immediately below

the initials. For example, the accumulator has '00' in it. When you

84

get to Chapter 6, you can use your monitor to examine these

registers.

For now, let's see how to assemble code in the monitor. The com

mand to enter assembly code is 'A'. Do the following to get started:

.A C000 JSR $E544 {RETURN}

As soon as you press RETURN your code is assembled and your

line now looks as follows:

.A C000 20 44 55 JSR $E544

.AC003

The numbers to the left of your mnemonic opcode and operand are

the machine language opcode and operand. The next available ad

dress is C003, and so you're all set to enter more assembly code.

FIRST hit the space bar and then enter the next line. After each

RETURN, you have to hit the space bar first before entering your

opcode.

.A C000 20 44 55 JSR $E544

.A C003 LDA #$00 {RETURN}

.A C005 STA $D021 {RETURN}

.A C008 RTS {RETURN}

Each time you hit return, the line you had just entered will insert the

machine language code. When you're finished with the above pro

gram will look like this:

.A C000 20 44 55 JSR $E544

.A C003 A9 00 LDA #$00

.A C005 8D 21 D0 STA $D021

.A C008 60 RTS

.AC009

Compared to using EDITOR64, this is a little messy, and it

assembles your code each time you hit return. You can edit your

code, but inserting code between addresses is complicated. For the

85

time being, let's just see how to save a PRG file using the above pro

gram.

To save a machine code program as a PRG file, simply press

RETURN after you are finished to get the period (.) prompt

without the 'A' and address. The 'S' command is used to S(ave)

PRG programs to disk or tape. Use the following to save the above

example:

.S"MONPRG.O",08,C000,C009 {DISK}

.S"MONPRG.O",01,C000,C009{TAPE}

The parameters after the file name include:

1. Device number; 01 for tape and 08 for disk.

2. Starting address.

3. Ending address plus 1.

Notice in our little program that we started at $C000 and ended at

$C008. Since $C008 + 1 = $C009, $C009 was our value used to

Save the program. Until you become comfortable with adding in

hexadecimal, just use the last address on the screen before you left

the 'A' mode.

To test your program from the monitor, you use the 'G' for

"Go" command. Since our program began at $C000, we would

enter,

.GC000 {RETURN}

You should have seen your screen clear and turn black. The little

program simply loaded the value for black (0) into the address for

the background color ($D021). To get back to the monitor, just key

in SYS 32768.

To see if your program really was saved as a PRG file, turn off

your computer and disk drive and re-start it. Load your program as

follows:

LOAD "MONPRG.O",8,1

86

When you get your READY, prompt, key in:

SYS 49152 {RETURN}

If your program is correctly saved, it should immediately clear your

screen and turn it black. That's a lot easier than using the

LOLOADER or HILOADER programs to get your machine pro

gram in memory.

= = CONVERTING YOUR EDITOR64 FILES = =

If you want to convert your SEQ object code files

created with EDITOR64 and ASSEMBLERS into

PRG files, you can do so (painstakingly) with the

monitor. First, load your SEQ object program with

LOLOADER or HILOADER depending on where your

files loads. Then, load the corresponding monitor pro

gram. (MONITOR$8000 if LOLOADER and MONI-

TOR$O000 if HILOADER.) Disassemble your object

code using the D command and starting and ending ad

dress of your object file. For example, you would enter

the following for our program:

.DC000,C008 {RETURN}

If you're not sure of the ending address, just disassemble

your code a few addresses at a time until you find the end.

Then using the S(ave) command from your monitor, save

your program using '.OP' (for OBJECT PRG) as an ex

tender.

Other Monitor Commands

Beside the A, G and S commands, your monitors have several

others as well. Here's a summary of them.

L for L(oad). This re-loads PRG files created with monitor

Save. Use the following format:

87

.L"FILENAME",DEVICE NUMBER

The device number is usually 08 for disk and 01 for tape.

.D for Disassemble). This disassembles code from a specified

starting address to a specified ending address. For example, we

could look at our illustration program with the following:

.DC000C008 {RETURN}

.M for M(emory dump). This is something like disassemble,

but you are given the hexadecimal machine code in memory

locations specified. For example, dump our example program

to memory with the following:

.MC000C008 {RETURN}

Compare it with what happened when you used the D com

mand.

.R for Register Display). When you learn about registers in

Chapter 6, you may want to see the status of the various

registers. You just enter R and press RETURN.

There are some other monitor commands we won't get into since

they are used for larger programs than we will deal with in this

book. Practice with the ones we've discussed to learn how machine

code is stored in memory.

SOME EXAMPLES

O.K., crank up your EDITOR64 and let's see some examples.

We'll use the comment and label fields. To get going enter AUTO

10 {RETURN}.

10

20

30

40

50

60

70

80

90

;LABEL OP OR COMMENT

*=$C000 ;LOAD ADRS

JSR

LDA

STA

LDA

STA

RTS

.END

$E544

#0

$D021

#5

$E716

Our entire first line is a COMMENT. The semi-colon lets the

assembler know that it is only source code that is not to be compil

ed. When you FORMAT your code, you can see if your assembly

code lines up under the correct label. If it does not, edit the lines

after LISTing them. Also while editing, turn off AUTO by just

entering AUTO {RETURN}. The FORMATted listing should ap

pear as the following:

10

20

30

40

50

60

70

80

90

;LABEL OP OR

*=$C00©

JSR $E544

LDA#0

STA $D021

LDA#5

STA $E716

RTS

.END

COMMENT

;LOAD ADRS

We did not use the LABEL field, but you can see the spaces

where labels would be when FORMATted. By frequently FOR-

MATting your code, you can check for the correct fields. Now

PUT this on disk and assemble it, and then load and run it. It'll turn

your screen black and your letters white. The next one turns your

border purple and your background yellow. (It looks like your

sister's first attempt applying make-up.)

10 ;LABEL OP OR COMMENT

20 *=$C000;LOADADRS

30 JSR $E544

40 LDA #4 ;PURPLE

50 STA $D020 ;BORDER ADRS

60 LDA #7 ;YELLOW

70 STA $D021 ;BACKGROUND ADRS

80 RTS

90 .END

With more comments, you have a better idea of what's going on

in the program. Later when we need labels, we'll see how they make

loops very easy. Now, go on to the next chapter and take a look in

side your computer.

89

90

CHAPTER 5

STRANGE NEW NUMBERS

DECIMAL, BINARY AND HEXADECIMAL NUMBERS

If you've been following our examples, you probably noticed

some funny numbers with dollar signs in front of them, like $E544

and $D021. Now with a perfectly good numbering system we all

understand, why confuse matters with funny numbers called hex-

adecimals? The reason lies in some even weirder numbers called

"binary" and the workings of your microprocessor.

To begin with, suppose instead of counting on our 10 fingers, we

used just our two arms. After all, the 10 digits in our numbering

system is based on our 10 fingers. Since we're used to our 10

fingers, our numbering system seems natural. However, our two

arms are natural, and we could have just had to remember two

digits instead of ten if we had counted with our arms instead of our

fingers. Let's count from 0 to 10 with our decimal numbering

system and think about what's going on:

1

2

3

91

4

5

6

7

8

9

10

Everything is lined up fine until we get to 10, and then we have to

start all over again with our 10 digits (0-9) adding a zero onto our

second digit. To keep things neat, let's add a zero before our first

digit:

©0

01

02

03

04

05

06

07

08

09

10

That's much better since our numbers are all lined up. Now all we

did in this system is clear. With our 10 digits (0-9), we use all of

them in our far right column, and when we run out, we simply tack

on a 0(start over) and increment our second from right digit by 1.

How would the same thing look with only two digits, 0 and 1?

00

01

10

11

We ran out of digits pretty quick! Comparethat with our decimal

system:

92

00 00

01 01

10 02

11 03

In other words, using our arms instead of our fingers, we can only

count to 3 before we run out of digits and have to add a third digit.

Okay, so we can count by a two digit system instead of the ten

digit system. But why? The reason lies in the way your computer

really works. Basically it reads electrical currents as either being on

or off. If a current is read as "ON" then it is read as "1." If it is

read as "OFF" it is read as "0." Now if you think computers are

pretty dumb, you're right. However, while they may be dumb,

they're very fast. As a result, your Commodore 64 can interpret a

bunch of0 's and 1 's into decimal numbers and strings and look like

it's really smart.

Your 6510 microprocessor is an 8 bit device. That means that it

has 8 cells that read a current in each cell (bit) as being ON or OFF.

Just about everything else in the computer is arranged to deal with

those 8 bits in the microprocessor. Knowing this, we know that we

can have a two digit numbering system 8 digits long.

7 6 5 4 3 2 10

0 10 10 10 1

The plus and minus signs underneath the values indicate whether

the current is ON or OFF. The 8 values (7-0) above the digits repre

sent the way byte is arranged. Thus when we say that Bit 6 is ON, we

know we're talking about the second bit from the left.

Our two digit binary system can count from 00000000 to

11111111. In decimal, that's 0 to 255. However, since 0 to 255 is an

uneven system, computer programmers used a 16 digit system

93

numbered from $0 to $FF. To see why, let's break down our 8 bit

number into two parts. Each part is called a "nibble".

7654 3210

0101 0101

Now, let's see how much we can pack into a two digit system with

four places and put our decimal and hexadecimal numbers next to

them. Binary numbers are often indicated with a percent sign; so

let's include one here.

Binary

%0000

%0001

%0010

%0011

%0100

%0101

%0110

%0111

%1000

%1001

%1010

%1011

%1100

%1101

%1110

%1111

Decimal

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010^-

0011

0012

0013

0014

0015

Hexadecimal

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

$0009

$000A

$000B

$000C

$000D

$000E

$000F

Now let's look again, but this time, we'll clear all the leading

zeros from the hexadecimal values and leave out the decimal.

Binary

%0000

%0001

%0010

%0011

%0100

%0101

Hexadecimal

$0

$1
$2

$3

$4

$5

94

%0110

%0111

%1000

%1001

%1010

%1011

%1100

%1101

%1110

%1111

$6

$7 .a^^B
$8 mM^^m
$9 Jxjr^
$A M$l^0

$c ^ml 4Sp
$D ^^. ..^
$E ^W
$F Sweet $10

As you can better see, the hexadecimal numbering system can

represent an entire nibble with a single digit. The decimal system has

to start using 2 digits when the binary system counts to 10 10.

1111 ^-Binary

F ^-Hexadecimal

Now since an 8 bit grouping, which is called a "byte", is compos

ed of two nibbles, we'll have to see what maximum number in hex

adecimal can be stored in a byte.

1111 1111 =11111111

$F $F =$FF

255 x 256 + 255 = 65535

Since there are over 64000 bytes in your Commodore 64, a

number system that keeps track of what is in each byte with only

two digits is more efficient than one that takes up to five digits, as

would the case be with a decimal system. (By the way in case you

didn't know, the "64" in Commodore 64 stands for 64 kilobytes. A

kilobyte is 1024 bytes. Thus your Commodore has 64 x 1024 bytes

of RAM.)

At this point, no one expects you to understand everything about

these weird numbering systems. Rather, all you should be able to

grasp is the concept that its easier to use a maximum oftwo digits to

represent what is in a byte than five. There are all sorts of conver

sion programs that will allow you to convert numbers into good old

decimal numbers. Your assembler will do it automatically for you.

95

Later on when you've worked with hexadecimal and decimal

numbers for a while, it will be a lot simpler. In the meantime, you

can use decimal numbers in assembly programs if you want.

To re-cap, here's what's going on in your computer and why hex

adecimal numbers are easier to use:

1. The processor interprets electrical currents as being ON or

OFF

2. The ON/OFF configuration is stored in an 8 bit binary

number or byte.

3. The 8 digit binary number is represented as a two digit hex

adecimal number.

4. When you look at a disassembly of machine programs, you

see hexadecimal numbers representing values in bytes.

GOING BETWEEN NUMBER SYSTEMS

Using conversion charts

Probably the best way to convert numbers when you're working

with your computer is with number conversion charts. In this way,

you can keep your computer free for programming and still make

the conversion. In the Appendices, there are several charts which

give addresses in both decimal and hexadecimal. In this way, you

can quickly find an address, the token of a machine language op

code or other information in both decimal and hexadecimal.

However, since the computer works with bytes, and each byte can

only hold a value of $FF or 255 (actually 256 since you can enter

values from 0-255), you have to make conversions on your own

when the number is greater than 255. This will help you understand

something about how the computer "thinks," and how you have to

think in writing assembly language programming.

Now since all the computer can stuff in a single byte is 255, how

does your computer deal with numbers larger than 255? It has to

use two bytes. One is called the high byte and the other is called the

low byte. Let's look to see how 256 looks in a two byte, high byte-

low byte configuration:

96

High Byte Low Byte

76543210 76543210

00000001 00000000 ^-Binary

$01 $00 ^-Hex

1 00 ^-Decimal

By multiplying the decimal number in the high byte by 256, we can

get the high byte value ofour decimal number. Since the Low byte is

zero in our example, we just add the high byte and low byte to get

256. The hexadecimal value doesn't have to be changed at all. We

just tack on the two zeros in the low byte to the $1 in the high byte to

get $100, the hexadecimal value of decimal 256. Now suppose in

PEEKing at a couple of addresses we found a high byte-low byte

value of the following:

High Byte Low Byte

12 33

To determine what that is in hex is actually easier than determin

ing the decimal value of the combined number. Looking at a

decimal-hex conversion chart, we find that the 12 is $0C and the 33

is $21. The hex value is $0C21. The decimal value is 256 x high byte

+ low byte. Thus, 12x256 + 33 = 3105, and now we know that

$0C21 = 3105. We did that with only a conversion chart from

0-255 ($0-$FF).

Now, how about going the other way? Let's say we have the hex

number $ABCD. First, we divide it into high byte and low byte get

ting:

High Byte Low Byte

$AB $CD

Our conversion chart shows us that SAB = 171 and $CD = 205.

Now we have a decimal high byte of 171 and low byte of 205. We

multiply 171 x 256 and then add 205 to get 43981. Your assembler

takes care of these matters for you, but as you get further and fur

ther into machine and assembly language programming, you'll be

looking up more and more numbers.

97

CONVERSION PROGRAMS

Sometimes you will be planning out a program and want to look

up values quickly. You won't be entering code on your computer,

but instead planning a program on paper making a lot of conver

sions between hex and decimal. While the charts are handy, you

want something a little simpler. (This is especially true if you want

to POKE or PEEK values in BASIC.) The following program will

do that for you. Pay special attention to the algorithms beginning in

Lines 240 and 300.

HEX/DEC DEC/HEX CONVERSION

10 PRINT CHR$(147)

20 INPUT "DEC OR HEX CONVERSION (D/H)Q = QUIT

";C$

30IFC$="H"THEN200

40IFC$ = "Q"THENEND

50 IFC$ <> "D" THEN 20

60HEX$ = "":N = 0

70 INPUT "DECIMAL VALUE";N

80HB=INT(N/256)

90LB=N-INT(N/256)*256

100 FOR X=1 TO 2

110IFX = 1THENN = HB

120IFX = 2THENN = LB

130 N% = INT(N/16) :GOSUB 310

140 N% = N-N%*16:GOSUB 310

150 IF X= 1 THEN H1$ = HEX$: HEX$ = ""

160IFH1$ = "0"THEN H1$ = "00"

170 NEXT

180HEX$=H1$+HEX$

190 HEX$ = "$" + HEX$ PRINT "HEX="; HEX$:

PRINT: GOTO 20

200H$ = "":DE = 0

210 INPUP'HEX VALUE ";H$

220 GOSUB 250

230 PRINT "DECIMAL VALUE = ";DE

240 PRINT: GOTO 20
250 REM **********************

98

260 REM CONVERT HEX TO DECIMAL

270 REM **********************

280 FOR L=1 TO LEN(H$): HD = ASqMID$(H$,L,1))

290 DE= DEM6+ HD-48 + ((HD > 57)*7)

300 NEXT L : RETURN
O-fllfl DCKJI **********************
oHlJ nfclvl

320 REM CONVERT DECIMAL TO HEX

330 REM **********************

340 HEX$ = HEX$ + CHR$(48 + N% + 7 * ABS(N% > 9))

350 RETURN

When you RUN the program, just choose 'H' to convert from hex-

decimal and 'D' to convert from Decimal-hex.

Binary-Hex-Decimal

In converting between hex and decimal, we broke down the hex

value into the high byte and low byte values. With binary conver

sions, we'll break 8 digit binary values into 4 bit nibbles. Each nib

ble converts into a single digit hex value. Then, by putting the hex

values in each nibble together, we have a one byte hex value.

Byte

High Nibble Low Nibble

7654

0101

3210

1110

Going back in this chapter to our binary-hexadecimal comparison,

we see that the high nibble's binary value of 0101 (or %0101 since

5 4

3 2 10

High Nibble Low Nibble

99

binary values are indicated with a percent sign) is $5 and the low

nibble value of %1110 is $E. Thus, the final hex value is $5E. You

can translate this into decimal by using the hex-decimal conversion.

If you don't already know how to convert directly from binary to

decimal, here's a simple way to do so. Take the byte as a unit and

use the multiples above the specified bit. After finding the multiple

value of each bit, add them all up to get your decimal value.

64

6

1

64

32

5

0

+ 0 +

16

4

1

4 +

8

3

0

0 +

4

2

1

4 -I

2

1

0

- 0

1

0

1

■<- Multiple

^-Bit

<*- Binary

number

1 = 73 Decimal

If you understand powers the bits can be understood as follows:

2A7 2A6 2A5 2A4 2A3 2A2 2A1 2A0 M- Power of

two

7 6 5 4 3 2 1 0 ^

Notice how the power of two corresponds with the bit number.

That way you can remember the multiple simply by knowing the bit

number. Thus instead of remembering that bit 5 is 32, you can

remember it as 2A5 or "two to the fifth power." (On your Com

modore 64 the A is represented by the up-pointing arrow.) Knowing

that, writing a little conversion program in BASIC should be a

snap:

10PRINTCHR$(147)

20 INPUT "BINARY VALUE "; B$

30IFLEN(B$) <> 8THEN 20

40 FOR X = 0 TO 7

50 V$ = MID$(B$,X + 1, 1)

60 V = VAL(V$): IF V < 1 THEN X = 7: PRINT

"BONG!":TD = 0:BV = 0:NEXT:GOTO 20

100

70 P = 7 - X

80 IF V = 1 THEN BV = 2tP: REM UPWARD ARROW

KEY

90 TD = TD + BV

100BV = 0

110 NEXT X

120 PRINT "DECIMAL VALUE = "; TD

130 INPUT "ANOTHER(Y/N) ";AN$

140 IF AN$ = "Y" THEN TD = 0 : GOTO 20

(Ifyou work with sprites, the above program will help you find their

values quickly.)

HOW NOT TO WORRY ABOUT NUMBERS

Your assembler will accept just about any kind ofnumbers; so, if

you know the correct number, you can enter it in either hex or

decimal. As we go along we'll be discussing more and more hex

adecimal elements ofprogramming in assembly language because it

is easier than decimal. (If you don't think it's easier, just look at a

batch of numbers with binary patterns. With fewer digits, the

numbers get longer quicker!) At this point, though, do not be over

ly concerned. Why worry if you can enter your programs in either

format. (Merlin and the Commodore assembler even accept binary

numbers.)

This chapter has just been a quick introduction to the number

systems used in computers. As you need it, you can always come

back and look up what you want. Don't try and attempt to be adept

at converting numbers all at once. Using your charts and programs,

you will gradually be able to see how to convert decimal into hex

adecimal and vice versa. In the meantime, just forge ahead and en

joy your computer.

101

102

CHAPTER 6

WHAT'S IN YOUR

MICROPROCESSOR?

The 6510 contains seven registers, three of which we will be using

a great deal and four others which you should begin to understand.

We will be manipulating the A, X, and Y registers in our programs

a lot, while the other registers will affect what we're doing to a more

or less apparent degree. But to get started, let's begin with the no

tion of a register.

WHAT'S A REGISTER?

Essentially, a register is something that keeps track of something

else. For example, stores keep track of the money they receive with

a cash register. It records how much money went in and how much

went out as change or refunds. Your major registers in your

microcomputer are much simpler in that most of them can only

count up to 255 ($FF) before they run out of room. In the last

chapter, we saw that your computer operates in 8 bit chunks called

"bytes." Most of the registers in your microcomputer also work in

8 bit bytes.

103

Since the registers can handle so little, you have to tell them

everything you want them to do. Think of them as some not-too-

bright friend who must be told everything. For example, let's say

you ask your little brother, "Go get my baseball bat." That's all

you need to say since you assume that he knows where the bat is. In

BASIC you can do pretty much the same thing with statements such

as GOTO, GOSUB and IF/THEN. BASIC and other high level

languages are really smart compared to assembly language. With

assembly language, you have to tell it everything you want. If your

little brother was given instructions in assembly language, "Go get

the bat," would become something like the following:

1. "Go into the house and up the stairs."

2. "At the top of the stairs, turn left and go into my room."

3. "In the room, go to the right wall where you will find a

rack."

4. "On the rack is a baseball bat"

5. "Put the bat in your hand and take it out of the rack."

6. "Turn around and leave the room."

7. "Come down the stairs and out of the house."

8. "Come to me and hand me the bat."

The reason you had to give this large set of instructions is because

your little brother can only handle one byte at a time. (Once you

give him the instructions, though, the little kid sure is fast!)

The instructions in assembly language are similar to giving in

structions to someone who can only handle one small parcel at a

time. The size and complexity of the instruction is dependent on the

size of the register. Since most of the registers are eight bits, the in

structions must be relatively small.

THE ACCUMULATOR

The most important register is the accumulator or A register. Its

contents are read by other registers, and it is used as a cross-roads in

your machine. It performs addition and subtraction, logical opera

tions and is usually the register to send information to different

memory locations. Several mnemonic opcodes refer to the Ac-

104

cumulator. For example, the instruction LDA LoaDs the Ac

cumulator (or A register) with some value, and STA STores what's

in the Accumulator at some address. Many instructions check to see

what's in the accumulator before taking action. Since it is an 8 bit

register, the greatest number possible in the accumulator is 255
($FF).

THE X AND Y REGISTERS

These two registers are also 8 bit ones. They can do most of the

things the accumulator can do, but they're usually used as counters

or "indexers." For example, the X or Y registers are often in

cremented something like FOR/NEXT loops. The contents of the

register is used as an index or offset to an address. If the register

value is "1" then "1" is added to a specified address. Thus, if you

wanted to do something with a range ofmemory without having to

keep entering the next memory location, incrementing the X or Y

registers is a handy way of doing this. They can also be used for

temporary storage, half-way houses and transfer points. In your

mnemonic opcodes the letters X or Y are tip-offs that the instruc

tion does something with one of these registers. For example, INX

increments the X register and TYA transfers the contents of the Y

register to the accumulator. Both registers are 8 bit ones and can

only hold a maximum value of 255 ($FF).

THE PROCESSOR STATUS REGISTER

(STATUS REGISTER)

This register is really different from the A, X and Y registers. In

fact, it is actually 7 little 1-bit registers packed into one 8 bit byte.

(One bit is not used.) Called the T' or Status register, it is affected

by what various opcodes do within a program. When we discuss

branching and looping, we will see more clearly how it works. For

now, let's take a look at its make-up.

7 6 5 4 3 2 10

N V * B D I Z C ^-Register

105

Before we see what the initials really stand for, here's a way to

remember them in order:

No Very Bright Dime Is Zero Cents

Just remember "bright dimes"

are worth ten cents, not zero

cents. And what's half a dime?

It's 5 cents. That'll help you

remember bit #5 is not used.

Before we look at the 1 bit

registers, you should realize they

all have only one of two condi

tions. You'll remember that a

single bit can either be "0" or

"1." If the register is "1", we

say that it's Flag is Up or set. If

the content ofthe bit is "0" then

the Flag is Down or cleared.

That's easy to remember since

each individual 1-bit register can

only be one or the other - set or

cleared. (Remember when you

clear out your drawer, it has

"0" contents.)

Negative Flag

When the results of an operation is "negative" the flag is set.

(That means there's a "1" in bit 7.) On positive results, the flag is

cleared, meaning a "0" is in bit 7. Loading a register (A,X or Y)

with a value of less than 128 will clear the N flag; loading a value of

greater than 127 will set it. Thus, "negative" refers to values greater

than 127 and "positive" to register values less than 128. (It has to do

with "two's complement" math, which we will not cover in this

book. In other words, don't worry about it.)

106

overflow Flag

This is set in signed arithmetic operations and cleared with a

special opcode. Don't worry about it for the time being, for at this

stage it won't concern us.

Break Flag

If the last instruction was BRK this flag is set. This is another flag

we will not be using much at first.

Decimal Flag

This flag is set and cleared for certain decimal operations with

SED and CLD respectively. We will not be concerned with this flag

as it is primarily used for determining the type of arithmetic the

microprocessor is to use.

Interrupt Flag

This flag is set if there is a hardware interrupt. We won't be going

into using this flag since it deals with hardware conditions in your

machine.

Zero Flag

If the last result was a "0"

then this flag is set. This flag will

be used a lot by our branching

instructions. The crazy thing

about this flag is that if the last

result in the accumulator was

"0" then the flag is set which

means there's a "1" in bit-1. So

that this won't confuse you, just

remember that when the last

result was zero, the Z register

gets all excited and waves a flag.

Setting a flag

107

Carry Flag

This flag is set when a carry/no-borrow condition arises. Other

logical and math operations also will set this flag. You can use it for

other things as well since there are opcodes for setting (SEC) and

clearing (CLC) the C flag. By using other instructions that read the

Carry flag, you can use it in various ways.

At the beginning level of assembly language programming, many

of the Status register conditions will not directly affect us. The big

gest problem encountered by beginners with the Status register is

when some condition exists they accidentally created. Unexpected

results may arise they do not understand. To avoid these unknown

sources of problems, we will be very careful in not tackling some

more advanced techniques affecting the Status register. However,

as you start experimenting on your own (as you certainly should

do!), you're going to have to go beyond the scope of this book for

understanding all the possible circumstances leading to unwanted

results. However, you should be aware that the Status register is one

place to examine for the cause of unexpected results.

STACK POINTER

This register handles some important information that won't

concern you directly at first but is critical to your program. The

stack pointer holds the return address for subroutine jumps. In

BASIC when your program executes a GOSUB, it needs something

that will tell it where it jumped from. This is called the return ad

dress. With assembly language, you will be using JSR (Jump to

SubRoutine) right away. The stack pointer tells the JSR where to

return after it has made the jump. Thus, while all the programmer

has to enter is JSR and everything will be handled automatically by

the stack pointer, the stack pointer itself is crucial to program's

operation.

The stack itself is located in "Page 1" of your memory; locations

$0100 - $01FF. (Page 2 is from $0200-$02FF, Page 3 from

$0300-$03FF, etc.) The stack works like the spring loaded tray

dispenser they have in cafeterias. As you remove each tray, a spring

108

underneath the trays pushes the

next one up. If you put a tray on

top of the stack, it will be the

first one you take off. That

means the Last In is the First

Off. This is called a LIFO ar

rangement.

87

53

74

39

53

74

39

87

Last In First Out

Your stack starts putting values at address $01FF, the top of the

stack. If you add another value, the stack pointer moves down to

point to the next lowest address, $01FE. Ifyou take one element off

the stack, the stack pointer is moved up to point to $0 IFF. Since the

stack stores two-byte addresses, such as $C004, usually we're deal

ing with two locations on the stack at a time. Thus, $0 IFF might be

$C0 and $01FE, $04. By moving the stack pointer down to point to

the most recently added value, the last value entered becomes the

first released. (The "last hired" is "first fired.")

As we said, you probably won't be doing much with the stack

right away since the most important work of the stack is keeping

return addresses. This is done automatically with JSR and other in

structions that require return addresses. However, assembly1

language programmers often use the stack for temporary storage.

The stack pointer, which tells the next available location on the

stack, starts at $FF and works its way toward $00. In our above ex

ample, where the return address of $C004 is using stack locations

$01FE and $01FF, the stack pointer points to $01FD as the next
location on the stack.

Stack

$01FF $C0

$01FE $04

$01FD i- Stack Pointer points here

109

Stack Pointer

$FF

$FE

$FD ^- Low byte

$01 <- High byte is always $01

Because the stack pointer is an 8 bit register, the most it can hold

is 255 or $FF. Since it needs a way to deal with values up to $0 IFF,

it needs a high byte of $01. To handle the high byte, $01 is always

the high byte of the stack pointer. Thus, even with an empty stack

with the pointer pointing to $01FF, the $FF is always combined

with the high byte of $01 to arrive at $0 IFF. In this way, the pointer

can handle the entire stack with an 8 bit register.

PROGRAM COUNTER

The program register is a 16-bit register storing the next address

to be executed in a program. As we will see in more detail in the next

chapter in discussing your Commodore 64's memory, the program

counter stores addresses in a Low-Byte, High-Byte configuration.

The 16 bit register is actually two 8-bit registers arranged as follows:

Program Counter Low Program Counter High

76543210 76543210

LO-BYTE HIGH-BYTE

As each instruction is executed, the program counter is in

cremented to the next address where an instruction will be stored. In

this way, your computer can execute instructions in the correct

order. However, since this is done automatically, you don't have to

worry about it.

INPUT/OUTPUT PORT

This port is located at locations $00 and $01 in your computer

and is the principle difference between the 6510 and the 6502

microprocessors. It is used for directing input and output (I/O),

110

and other than suggesting that you stay out ofthose locations, we're

not going to be dealing with this port at all. The $0 location is the

data direction register, and $1 is the I/O port itself.

SUMMARY

It's easy to get tangled up in the registers if you try to do too

much too soon. For the most part, your major operations will be

with the accumulator, and the X and Y registers. Your program will

be affected by the other registers, but as in BASIC where most of

the computer's operation are taken care of for you, in assembly

language programming, most of the registers take care of

themselves. Thus, while its useful to know about the P register's

flags, and we will be using instructions that rely on those flags, you

don't have to actually "hand-set" the flags. Rather, you simply will

be writing opcodes that take care of the flags for you. As you

become more advanced, you will be making more direct use of the

registers in your programs. To begin, though, you don't have to

keep track of everything the registers are doing.

So if you feel a bit lost right now, and you do not think you

understand everything about the various registers that work with

your microprocessor, don't worry. While assembly language pro

gramming requires that you give your computer more instructions,

the bulk of what goes on is fairly automatic. Just remember to take

things a step at a time when we get into writing actual assembly

language programs. With practice and experimentation, what we

have covered will become clearer.

Ill

112

CHAPTER 7

MEMORY AND STORAGE

LINE NUMBERS AND ADDRESSES : A COMPARISON

When you write a BASIC program, the line numbers you use are

a point of reference. It doesn't matter whether you number your

program 1,2,3,4,5,6, etc. or 10,20,30,40,50, etc. or even

1,10,32,113,2000. All you have to do is to make sure that the pro

gram statements are in order. In fact, the line numbers are simply a

convenient way of ordering your statements so your program

knows what comes next. Thus, the following BASIC programs all

do the same thing despite the different line increments used:

10 PRINT CHR$(147)

20 FOR X = 1 TO 10

30PRINTX

40 NEXT X

50 END

5PRINTCHR$(147)

11 FORX = 1 TO 10

12 PRINT X

130 NEXT X

2000 END

13

1 PRINT CHR$(147): FOR X = 1 TO 10

3 PRINT X: NEXT X

5 END

Not only can we use any ordered (from lower to higher) line

numbering system, we can put several statements in the same line.

Your BASIC interpreter handles all the details for you. It assigns

the BASIC tokens, knows what is a token and what is a value, and

sticks the program in an area reserved for BASIC programs.

With assembly language programming, the first decision you

make is where to put your program. Ifyou put it in the wrong place,

it'll bomb. For example, if you want to execute your machine pro

gram from a BASIC program, you'd better not put your machine

code in the area used by BASIC. Likewise there are other areas in

your computer that will conflict with your program, or simply will

not accept the code you enter.

Once you decide where to put your program, you must use con

tiguous addresses. That means, if your last instruction used ad

dresses 49152, 49153 and 49154 ($C000-$C002), the next instruc

tion must begin at 49155 ($C003). You are not using numbers simp

ly as a way of ordering your commands as in BASIC, you are ac

tually stuffing information into addresses that will be executed se

quentially. FORTUNATELY, YOURASSEMBLER WILL KEEP

TRACK OF THIS FOR YOU. All you have to do is to make sure

that the area you're using is clear. So while it is imperative to have a

clear spot in RAM to put your program, the addresses used from

that point on will be handled by your assembler.

What confuses most beginning assembly language programmers

is the different ways that various assemblers handle this. Let's look

at the three covered in this book to see how each deals with this.

Kid's Assembler : No Line Numbers

Since this assembler is meant to teach you about what's happen

ing to your code as you enter it, the actual addresses are given as you

enter your opcodes and operands. The addresses are given in

decimal values so that you can see how many bytes ofmemory each

114

instruction uses. For example, when using the Kid's Assembler you

would see the following:

ADRS OPCODE OPERAND

49152 JSR $E544

49155 LDA# 0

49157 TAX

49158 STX $D021

etc.

In the above example the first instruction used 3 bytes at addresses

49152, 49153 and 49154. Therefore, the next available address is

49155, which you can see in the second line. The next instruction used

only 2 bytes, 49155 and 49156, and the third instruction, only a single

byte. Thus, while the increments from one instruction to the next

may be uneven, you can get a clear idea of where your code is being

stored and how much memory is being used.

Merlin64

When you use the editor in Merlin, you get line numbers in

cremented by one as you enter your program. This system makes it

easier to keep track of everything, and since you can insert code be

tween the lines, you don't have to worry about having spaced be

tween line numbers. With the powerful editing features in Merlin64,

you can manipulate and change your opcodes and operands.

However, until you learn how many bytes each instruction uses in

the different addressing modes, you won't know how much

memory you used until you ASseMble your code. At that time you

will see the actual addresses and the number of bytes you used. You

don't have to worry about addresses, other than where to start plac

ing your code, since like the Kid's Assembler, this is automatically
done for you.

Commodore Development System

When using EDITOR64, you should treat your line numbers the

same way as you would a BASIC program. This is because you will

need room to insert lines between line numbers. If you run out of

115

room between lines, you can reNUMBER your lines (fortunately)

to insert code. These line numbers, however, are not the addresses

you in which your code is stored. Rather, they simply represent the

sequence in which your instructions will be assembled. Once you

use your ASSEMBLE64 program, you can see the addresses where

the code is stored.

ROM AND RAM MEMORY

If you don't already know it, there's an important difference be

tween ROM and RAM memory. Basically, ROM memory is "iron

plated" and what is there, stays there. Your BASIC ROM, for ex

ample, is always the same no matter how many times you turn your

computer on and off. (You can move ROM routines into RAM and

change them in RAM. However, this has no effect on what's in

ROM.) RAM, on the other hand, can be changed simply by enter

ing new values in the RAM addresses. You might imagine your

computer's memory as a book with only some of the pages with

print. Those pages with print have information that stays on those

pages. It also has some blank pages where different material can be

added or changed. The blank pages are like RAM and the printed

pages like ROM. However, even with the blank pages, there are cer

tain ones that are reserved for certain things you will usually want

on those pages. For example, while BASIC is in ROM, it loads into

RAM in certain locations. You can change what has been put in

RAM, but usually you leave it alone. That leaves certain other

pages that are almost always blank, and you can write whatever you

want in them. These are the pages we will use to store our assembly

language programs.

Your Commodore 64 can access more than 64,000 RAM ad

dresses, but we're going to concentrate on basic 64K RAM con

figuration. Some parts of this RAM are normally used for the in

formation stored in ROM. Thus, while we will refer to them as

ROM areas, in fact, they can be used as RAM. (Think ofthese areas

as having ROM routines loaded into them from the ROM chips.)

First, lets look at a "map" of how your Commodore 64 defaults

memory set-up. This will be used in our programming considera

tions even though some assemblers rearrange memory to provide

more space for machine language programs.

116

STANDARD MEMORY ALLOCATION

$E000-$FFFF

57344-65535

$D000-$DFFF

53248-57343

$C000-$CFFF

49152-53247

$A000-$BFFF

40960-49151

$8000-$9FFF

32768-40959

$4000-$7FFF

16384-32767

$0000-$3FFF

00000-16383

8K Kernal ROM

4K I/O or

Character ROM

4KRAM

BASIC ROM

or ROM Plug-in

8K RAM

or ROM Plug-in

16K RAM

16K RAM

First 32K

At first glance, you might look at those two 16K blocks ofRAM

at the bottom and decide that's the place to store your machine

code. As it happens, this is not the case. First of all, you won't be

doing any programs that use 32,000 addresses for a while, and if

you did, you'd run into the area where BASIC is stored as well as all

kind of other things you don't want to crash into.

8K RAM or ROM Plug-in

Right above the second block ofRAM is an 8K block that is used

either as RAM or a ROM plug-in. This is a good place to store your

117

programs ifyou don't use a ROM plug-in. However, you may want

to write programs that others who do use plug-in ROMs will use. If

you store your programs here, they may be over-ridden or conflict

with a plug-in. For example, I have a plug-in utility program called

"Vic-Tree." I use it all the time for easily accessing my disk and

editing BASIC programs. If I have a machine code program in the

area used by the "Vic-Tree", as soon as I initiate the ROM with

SYS 32768,1 blow out the machine code stored there.

8K BASIC ROM Area

The next area of RAM, $A000-$BFFF, is where your BASIC

ROM loads in. Programs stored here will conflict with your BASIC

operations. Since you will often want to SYS a machine routine

from a BASIC program, any code stored here will be wipe out your

BASIC.

4KRAM

Next, we come to a

nice clean-looking 4K

area of RAM beginning

at $C000 (49152). This

is the area I like to use

the most since there's

plenty of room to write

programs, and it doesn't

conflict with anything

else. It's above the

BASIC ROM area, out

of the way of plug-ins,

and very far away from

where your BASIC in

struction storage begins

($800/2048).

4K I/O or Character ROM

Leave this area alone for now since your characters are stored

here or used for your I/O.

$COOO-$CFFF

49152-53247

118

8KKernalROM

This area is a good place to visit with JSR since it has so many

useful subroutines you will want to use. However, if you store your

program here, you'll conflict with the Kernal. Think of this area as

a tool box. You build your program somewhere else but use all the
tools in this area.

Some nooks and crannies

Now you may be thinking all you have is a crummy 4K for your

programs. That's almost true if you want to use your BASIC and

have room for plug-ins. However, there are some other places you

can use while keeping all your other goodies in tact. Probably the

favorite for assembly language programmers is the cassette buffer

from $33C-$3FB (828-1019). That gives you only 192 bytes, but

we're going to be using short routines to get started; so there's more

than enough room here. The only problem is that if you have a

cassette recorder, you'll crash into some routines used by the

cassette. Likewise, there are little places you can find that are un

used or so little used that you're probably safe. For example, there

are eight bytes available from $334-$33B, Sprites 13-15 from $3CF-

$3FF as well as other little hidey holes. However, its not worth the

bother to even worry about these locations until your programs get

really big. By that time, though, you'll probably want a re

configuration of memory to use everything taken up by BASIC.

For the time-being there's plenty of room to work in the 4K area

of RAM. In fact, we'll be able to stick dozens of little routines there

simultaneously that we can SYS from BASIC. After that, the 8K

block of RAM beginning at $8000 is available unless you use a

plug-in ROM a lot. (Merlin64 defaults to this area since the

assembler/editor uses $C000. However, there's no problem in hav

ing your programs executed from the $C000-$CFFF area once

Merlin is out of memory. We'll discuss this more a little later.)

MINI-MONITOR

To look at the contents of your ROM and RAM, monitors are

handy. In previous chapters, I suggested you write your own

119

monitor, and I still think you should. However* to get you started

on your monitor, the following "mini-monitor" examines the con

tents of your memory for you. Addresses and their contents are

presented in hexadecimal and decimal. In this way, you can see

where you have free RAM and where there is information stored.

Also, as you start learning the hexadecimal machine opcode values,

you can actually read the routines in your memory. In the next sec

tion we will be discussing the high-byte / low-byte arrangement of

address storage, and this too you will be able to see. Moreover, since

the mini-monitor is written in BASIC, it will be able to examine

itself. Take a look at the code being stored beginning at address

$800 (2048).

MINI-MONITOR

10 PRINT CHR$(147)

20 PRINT "BEGINNING ADDRESS OR {RETURN} FOR

NEXT"

30 INPUT"ADDRESS. PRESS 'Q' TO QUIT ";AD$

40 IF AD$= "Q" THEN END

50AD = VAL(AD$)

60 FOR K = AD TO AD +15: N = K

70HB = INT(N/256)

80LB = N-INT(N/256)*256

90FORX=1TO2

100IFX=1THENN = HB

110IFX = 2THENN = LB

120 N% = INT(N/16) :GOSUB 250

130 N% = N-N%*16:GOSUB 250

140 IF X= 1 THEN H1$= HEX$: HEX$ = ""

150 IF H1$ = "0" THEN H1$ = "00"

160 NEXT

170HEX$=H1$ + HEX$

180 HEX$ = "$" + HEX$:PRINT HEX$;"-";:HEX$ = ""

190 N = PEEK(K)

200 N% = INT(N/16) :GOSUB 250

210 N% = N-N%*16:GOSUB 250

220 PRINT HEX$;" ";K;"-";PEEK(K): HEX$ = ""

230 NEXT

120

240 AD$ = STR$(K): GOTO 20

250 REM **********************

260 REM CONVERT DECIMAL TO HEX
270 REM **********************

280 HEX$ = HEX$ + CHR$(48 + N% + 7 * ABS(N% > 9))

290 RETURN

You enter your starting address in decimal. Once you've done

that, just press RETURN to look at the next block of memory, or

enter a new starting address. The hexadecimal and corresponding

decimal values are displayed on the same line to help you get ac

quainted with going from one number system to the next.

Since your mini-monitor simply looks at hex and decimal values,

it isn't much of a monitor. See if you can change it to do some or all

of the following:

1. Move blocks of code from one area to another.

2. Allow starting addresses to be entered as either decimal or hex

adecimal.

3. Change memory values. (A simple POKE subroutine will do

that.)

4. Display mnemonic opcodes for machine opcode. (This is

tricky since you have to distinguish opcodes from address values,

but it can be done. The trick is in knowing the number ofbytes each

opcode uses.)

This can also be used as a hex-decimal conversion program for

converting useful Kernal addresses to decimal so that you can SYS

them from BASIC. In fact, one of the first areas you will want to

explore is from 57344-65535 ($E000-$FFFF).

BACKWARD NUMBERS:

LOW-BYTE / HIGH-BYTE STORAGE

In discussing the numbering systems used in your computer, we

arranged the high-byte and low-byte in the order we read a number.

For example, a common subroutine in your kernal is at location

121

$E544. You've seen this in our example programs, and we'll be us

ing it a lot more. Broken down into a high-byte and low-byte, it

would look like the following:

HIGH BYTE

$E5

LOW BYTE

$44

However, your Commodore 64, along with other 6502 based

microcomputers, store two-byte numbers in a low-byte / high-byte

configuration. Therefore, in your computer's memory, it would

look like this:

LOW BYTE

$44

HIGH BYTE

$E5

Everything else is in the expected order, but addresses are stored

backwards. For instance, the following instruction,

JSR $E544

would be stored in three addresses as

$0000 20

$C001 44 ^-Low byte

$0002 E5 ^-High byte

The '20' is the hexadecimal

machine opcode for JSR. It's

just where we would expect it to

be since it is the first in our

assembly instruction and is at

the first address. However, the

second or low byte, 44, of$E544

comes first, followed by the E5.

If we had made our JSR to $22,

our code would be arranged as

follows:

44

122

$C000 20

$C001 22^-Low byte

$C002 00 ■<- High byte

And a JSR to $FF0 0 would look likes this:

$C000 20

$C001 00 <<- Low byte

$C002 FF ■*- High byte

So if you see a number like the following:

1A 09

Just switch it so it is:

09 1A

And you get $91A.

BYTES, OPCODES AND ADDRESSING MODES

We've discussed the fact that different opcodes use different

amounts of memory, and the same mnemonic opcodes in different

addressing modes use different numbers ofbytes. As we get into the

actual use of opcodes in the next chapter, you will be better able to

see how this works. For now though, we should preview this a bit.

The first thing to remember is that an opcode uses only 1,2 or 3

bytes of program memory. Let's examine each in terms of bytes

used.

lByte

The most economical opcodes are those using only a single byte.

For example, we've seen RTS. It has no operand, and so it is said to

be an implied opcode. (Implied addressing.)

123

2 Bytes

Opcodes that can only handle 1 byte operands take up two bytes.

One byte is for the opcode and the other for the operand. Any in

struction that can have a maximum operand value 255 ($FF) is a

two byte instruction. For example, in the immediate mode, LDA

can only have a maximum operand value of 255 ($FF).

3 Bytes

Opcodes whose operand is a non-zero page address have three

bytes. One byte is used for the opcode, one for the low-byte of the

address and one for the high-byte. For example, LDA in the ab

solute addressing mode uses three bytes.

SUMMARY

As you practice and experiment, the material we have covered

will become easier. In the next several chapters we will be putting to

work the knowledge we have developed. Thus, what has been

abstract will become concrete and give you a new level of

understanding. You will make mistakes, but whereas an uninform

ed programmer does not understand why he made a mistake, you

will. For example, you may accidentally load your program into

$800 instead of $8000. Since $800 is the beginning of BASIC, any

BASIC program you try to execute after loading a machine

language routine in that location will bomb. Because you now know

something about how memory works, you will be able to spot the

problem and correct it.

124

CHAPTER 8

JUMPING IN

WHERE TO SUCK YOUR PROGRAMS

Just in case you skipped our discussion of program placement,

we'll quickly review both the procedure for assigning the starting

address and the recommended places to start. Since each assembler

is a little different in this regard, read the section that applies to the

assembler you're using.

Auto-Placement With Kids' Assembler

If you're using the Kids' Assembler, the default starting address

is 49152 ($C000.) When you enter the editor/assembler all you

have to do is press RETURN, and your program is stored beginning

at 49152. If you want another address, just enter the decimal value

for the address and press RETURN.

ORG Pseudo-Opcode In Merlin64

If you do not specify a beginning address with ORG in your first

line; then it will default to $8000 (32768). This is fine if you do not

use plug in ROMs, and you can test your programs while Merlin is

still in memory if you use this address. However, if you want your

125

programs in $C000 or some other area outside of the plug-in ROM

location, then use the following format:

LABEL OPCODE OPERAND ;COMMENT

ORG $C000

This should be your first line of code in the programs we will be

covering in this book. Once you're more advanced you can do more

with ORG in different places in your program.

Commodore Assembler's * = function

If you use the Commodore EDITOR64, your first line should be

* = to some clear area of memory. Since the default address is zero

($0000), you must begin your programs with the * =.

LABEL OPCODE OPERAND ;COMMENT

*=$C000

Since the Commodore 64 Macro Assembler Development

System uses special loader programs to put your assembled code in

to memory, be careful in choosing your loader. Since our examples

will stick with the 4K of RAM beginning at $C000 (49152), you

should use the LOLOADER. It loads at $0800. However, since the

HILOADER loads at $C800, which will be above our example pro

grams, you can use it as well.

One final thing about the Commodore editor/assembler; you

must end your programs with .END in the OPCODE field. Neither

the Kids' Assembler or Merlin's Apprentice understands this

pseudo-opcode; so only use it with the Commodore system.

VISITING BUILT-IN SUBROUTINES WITH JSR.

At the top of your memory is the Commodore-64 Kernal. A visit

to the Kernal with the JSR instruction will execute the subroutine at

the addresses specified in the operand and return to your program.

For example, one subroutine we'll want to use is called CHROUT.

126

It outputs a character to a specified channel, usually the screen. The

CHROUT routine is located at $FFD2 (65490). Likewise, at $E716

(58159), there is a subroutine to output the contents oftheA register

(accumulator) to the screen. Both subroutines can do the same

thing, but each requires different preparation routines we will learn.

In Appendix D there is an extended listing of Kernal subroutines.

As we go along, we'll introduce some other handy subroutines that

are built into your Commodore-64.

The best way to envision the JSR instruction is as a GOSUB.

However, unlike BASIC where you must write your own routines,

the JSR goes to a built-in subroutine. (Of course you can JSR to

subroutines you've written yourself, but that will come when you're

more advanced.) For the time being, think of the JSR in terms of

built-in subroutines that do all kinds of things for you. In fact, the

JSR instruction is actually simpler than GOSUB since with BASIC

GOSUBs you have to prepare your own subroutine. Just imagine a

really nice person at Commodore who spent a lot of time writing

complex subroutines for you to make assembly language program

ming easier. The following is a sampling of some handy subroutines

to visit with JSR:

HEX DECIMAL FUNCTION

$E544

$E566

$E716

$E891

$E8E7

$E9FF

$FF9F

$FFCF

$FFD2

$FFE4

SFFF0

58692

58726

59159

59537

59624

59903

65439

65487

65490

65508

65520

Clear screen

Home cursor

Output to screen

Perform RETURN

Scroll screen

Clear screen line

SCNKEY-scan keyboard

CHRIN-get char from input

channel, usually keyboard

CHROUT-output a character

GETIN-get a character, usually

from keyboard

PLOT-set cursor location

Most of the built-in subroutines expect some value in the ac

cumulator or some preparatory set of instructions. For example, a

127

JSR to $E516 (output to screen) sends whatever is in the A register

(accumulator) to the screen. Other subroutines, such as CHROUT

expects a channel defined by the CHKOUT subroutine, and in turn,

CHKOUT expects the OPEN subroutine to prepare the channel.

We'll get to these as we accumulate more instructions.

To get you going, we'll do some simple JSR's to subroutines ex

pecting nothing. However, before we do that, we'd better look at

RTS.

GETTING OUT WITH RTS

Probably the most frequent cause of Computer "lock-up" is the

failure to end a routine with RTS. If you execute a machine

language program from BASIC in either the immediate mode or

from a program with SYS, control is taken over by your machine

language program. The program executes instructions one address

at a time. If there is not an instruction to tell the program to ReTurn

from Subroutine (RTS) then it merrily goes on to the next address

and instruction. This can be a real problem if the area where you're

programming has "garbage" in it, either in the form of the rem

nants of another machine language program or other code that

somehow got placed there. For example, the following might be a

simple routine to clear the screen that forgot to include an RTS:

$C000JSR $E544

Garbage from here on

$C003 LDA #0 ^- Remnants from other program

$C005STA $D021

$C008LDA #144

$C00AJSR $E716

More junk...

Your JSR to $E544 sure cleared the screen for you, but the "gar

bage" turned your background and character color to black. So in

stead of having a nice clear screen and control over your computer,

you have black on black with no visible cursor!

Now that we have JSR and RTS, let's write some simple pro

grams:

128

LABEL/ADRS OPCODE OPERAND ;COMMENT

ORG $C0(D0 ;Merlin only

* = $0000 jCommodore only

49152 JSR $E544

49155 RTS

.END ; Commodore only.

After entering RTS on the Kids'

Assembler, enter 'Q' for 'quit.'

As our listings become more

complex, we will have separate

listings for the Kids' Assembler

and a general listing for other

assemblers. You will have to

remember to include the ORG

or *= pseudo-opcodes (or

whatever your assembler uses to

indicate the start address ofyour

program) and to end it with

.END on your Commodore

assembler.

With RTS,dear.

we

et back

Ma?

Now, you've seen that little program elsewhere in this book, and

by now you should not only know how to clear your screen, but

how to get back control of your computer once you've done that.

Just to see if you understand the concept of JSR, see if you can

write a program that will Home the cursor but not clear the screen.

(HINT: Find the address of the Home cursor routine.) If you can

do that, go on to the next section.

LOADING UP WITH LDA

Your accumulator is the work horse of assembly language pro

gramming. Its contents, which can be from $0-$FF (0-255), are

used by other instructions. Furthermore, many of the built-in

subroutines expect something in the accumulator. One way to get

something into the accumulator is with the LDA (LoaD Ac

cumulator). For example, try the following little program:

129

LABEL

GENERAL

OPCODE OPERANDCOMMENT

ADRS

49152

49155

49157

49160

ORG $C000

*=$C00©

JSR

LDA

JSR

RTS

.END

$E544

#88

$E716

KIDS' ASSEMBLER

OPCODE

JSR

LDA#

JSR

RTS

OPERAND

$E544

88

$E716

; Merlin

Assembler

; Commodore

Assembler

; Clear screen

; Load the ac

cumulator with

the decimal

value 88

; Output to

screen

; Commodore

assembler

Note the the presence of the pound (#) sign right before the 88 (or

at the end of the LDA in the Kids' Assembler.) That means the

LDA is in the Immediate mode. The value in the operand is actually

loaded into the accumulator.

We'll discuss addressing modes more in a bit, but let's see what

the program does. When you assemble and run the program, you

will see an 'X' printed in the upper left hand corner of your screen.

The "output to screen" subroutine at $E716 took the value in the

accumulator, and placed it on the screen. Since the 88 is the ASCII

value of the letter X, that's what was output to the screen. Appen-

130

dix J has a complete listing of the various values for your Com

modore Character Set.

The following example loads different values into the ac

cumulator and prints my first name, "BILL". (Remember the

ORG on Merlin and *= and .END on your Commodore

Assemblers respectively.)

GENERAL

BEL OPCODE OPER

JSR

LDA

JSR

LDA

JSR

LDA

JSR

JSR

RTS

$E544

#66

$E716

#73

$E716

#76

$E716

$E716

OPERAND COMMENT

;B

;L

KIDS' ASSEMBLER

ADRS

49152

49155

49157

49160

49162

49165

49167

49170

49173

OPCODE

JSR

LDA#

JSR

LDA#

JSR

LDA#

JSR

JSR

RTS

OPERAND

$E544

66

$E716

73

$E716

76

$E716

$E716

131

Now wait a minute! There are

only three LDA's and yet the

word BILL has four letters.

What's going on? There is

nothing in the program that af

fects the contents of the ac

cumulator. Some subroutines or

other actions can scramble the

accumulator, but generally what Loading the accumulator LDA

was last loaded with LDA stays

there. Therefore, since BILL has two L's together, the value for the

letter L (76) was still there after the first one had been output to the

screen. To see if you understand everything so far, see if you can

change the program to write your own name to the screen.

IMPLIED, IMMEDIATE AND

ABSOLUTE ADDRESSING MODES

The program that printed a letter to your screen used three ad

dressing modes, implied, immediate and absolute. The implied

mode occurs when no operand exists. RTS is in the implied address

ing mode. Instructions in the implied mode only take one byte of

memory since all it needs is a single machine opcode.

The immediate addressing mode is signaled by the pound sign

(#), usually the first character in the operand. (As explained in

Chapter 2, the Kids' Assembler attaches the addressing mode to the

end ofthe opcode.) This means that the contents of the operand are

loaded, stored, compared or in some other way acted upon by the

operand. Thus, LDA #88 (or LDA# 88), took the value of the

operand and put it in the accumulator. Operations in the immediate

mode take two bytes; one for the opcode and one for the operand,

which can be no larger than $FF (255).

Finally, we used the absolute addressing mode with our JSR in

struction. The absolute addressing mode refers to the address in the

operand, not its value. Since JSR only works in the absolute mode,

we don't have to concern ourselves with it. However, LDA also has

an absolute mode. If we had written,

132

LDA88

instead of loading the accumulator with the value 88, it would have

loaded the accumulator with the value stored in address 88 ($58). If

you want to see the difference in results, just remove the pound (#)

sign from the operand (or the opcode in the Kids' Assembler.) Since

locations 87-96 ($57-$60) are a miscellaneous numerical storage

area, there's no telling what you'll get. (Go ahead and try it just for

fun.)

To summarize the addressing modes we've used so far, keep the

following in mind:

IMPLIED MODE. Uses single byte and no operand.

IMMEDIATE MODE. Uses actual value in operand, either

decimal or hexadecimal, and uses two bytes.

ABSOLUTE MODE. Uses value in the address in operand.

Three bytes of memory are used; one for the opcode, and one

apiece for the low and high bytes of the address.

= = A COMMON MISTAKE= =

Sooner or later you will make the mistake of mixing up

the immediate and absolute modes. You will put in LDA

200 when you meant to write LDA #200 (LDA# 200 on

the Kids' Assembler.) Don't worry, it'll happen, believe

me. Now that you know it will happen, you also know a

common bug in assembly language programs. All you

have to do is to add the pound (#) sign and your results

will be what you expected in the first place. (Also, you'll

wish you had an assembler package with a good editor!)

At this point, we're starting to get somewhere. We've used

assembly language commands interactively. That is, what we did

with one opcode instruction, affected another. That wasn't too dif

ficult, was it?

133

STORING WITH STA

In BASIC programming you define variables with statements

such as;

A = 45

In essence, you are storing the value 45 in a variable called A. In

your machine language interpreted BASIC program, the variable A

is an address in memory; so that whenever A is accessed, the con

tents of the address for A is accessed.

In assembly language programming, you actually put a value into

a certain address. Sometimes you will use an address that you know

is empty and is simply a handy place to store a value to be used later

in your program. Very often, though, you will store a value in an

address that activates a process. This will either supply a value for a

built-in subroutine or an address that stores a color or character on

your screen. Let's look at each of these uses with the STA instruc

tion.

In the absolute mode STA stores the accumulator's value in a

specified address. For example, if you LDA with a value of 10, and

then STA $33C, the value 10 will then be stored in location $33C.

Storage in Empty, Unused RAM

In planning an assembly language program, you not only have to

plan for space for your program, you also have to plan for space for

your variables. For example, if your program uses 30 bytes for the

program itself, it may use another 30 bytes, or even more, for

variable storage. For example, you may use the addresses from

49152-49181 (SC000-C01D) for your machine instructions and

49200-49230 to store your variables. Therefore, you need to plan

for 60 bytes of memory. The following program loads (LDA) a

value into the accumulator in the immediate addressing mode (#),

stores the value at an unused address (STA), clears the accumulator

by loading it with zero, (LDA #0), and then loads the accumulator

from the absolute mode (LDA) from the address it first stored the

134

value. To show you what it did, it prints the character for the ASCII

code in the accumulator with JSR $E716.

LABEL

GENERAL

OPCODE OPERAND COMMENT

{MERLIN ORG

{COMMODORE * = $C000

JSR

LDA

STA

LDA

Mode

LDA

Mode

JSR

RTS

{COMMODORE .END}

$C000}

$E544

#$43

$C050

#$0

$C050

$E716

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

;CLS

; ASCII 'C

; Immediate

; Absolute

49152

49155

49157

49160

49162

49165

49168

$E544

$43

$C050

$0

$C050

$E716

In the above example, we used only hexadecimal values in the

operand. This was to show you that both the pound sign (#) and

dollar sign ($) had to be included in the operand in standard

assembler format. Before you run the program, see if you can guess

the character to be printed to the screen.

STORAGE IN 'SOFT-SWITCH' ADDRESSES

A 'soft-switch* is a switch that is activated by the software. In

your Commodore 64, there are many such locations. For example,

135

the background color of your screen is determined by the value in

53281 ($D021). At the end ofChapter 1, weshowed all ofthe values

to be POKEd into 53281 to give you the desired background color

on your TV or monitor. Whenyou use a soft-switch address to STA

a value, it is the same as POKEing that location in BASIC. For ex

ample, to turn your background to black, you would STA the ac

cumulator value in $D021. The following little program shows you

how:

GENERAL

LABEL OPCODE OPERAND COMMENT

{MERLIN ORG

{COMMODORE *=$C0O0}

LDA #$0

STA $D021

RTS

{COMMODORE .END}

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

49152

49154

49157

LDA#

STA

RTS

$0

$D021

There are a lot of pointers, flags and registers that can be treated

as soft-switches, and simply with LDA and STA instructions, you

can change them to what you want. The following is a list of some

soft switches and pointers we will be using: (Later on we will deal

with the many registers that affect your sprites and sound.)

SOFT SWITCHES AND POINTERS

HEX DECIMAL FUNCTION

$2B-$2C

$2D-$2E

$286

43-44

45-46

646

Start of BASIC

Start of BASIC variables

Current character color

136

$28A

$D02©

$D021

$D022

$D(D23

$D(D24

650

53280

53281

53282

53283

53284

Repeat all keys if $80

Border color 0-15 ($0-$F)

Background color 0,0-15

($0-$F)

Background color 1,0-15

($0-$F)

Background color 2, 0-15

($0-$F)

Background color 3,0-15

($0-$F)

Let's make a simple and practical program. In fact, let's make

two. One will make all your keys repeat, and the other will turn off

your key repeat. We'll store one program at 49152 and the other at

49200. When you SYS 49152, all your keys will repeat, and when

you SYS 49200, the repeat will be turned off. These programs can

be loaded simultaneously while you program in BASIC. You might

want to turn on the repeat function if you're working with

keyboard graphics and turn it off if you're working with text. Save

the first program under the name ON and the second OFF.

GENERAL - "ON"

LABEL OPCODE OPERAND COMMENT

{MERLIN} ORG $C000

{COMMODORE}* =$C000

LDA #$80

STA $28A

RTS

{COMMODORE} .END

KIDS' ASSEMBLER - "ON"

ADRS OPCODE OPERAND

49152

49154

49157

LDA#

STA

RTS

$80

$28A

137

GENERAL - "OFF"

LABEL OPCODE OPERAND COMMENT

{MERLIN} ORG $C©3©

{COMMODORE}* = $C030

LDA #$0

STA $28A

RTS

{COMMODORE}.END

KIDS' ASSEMBLER - "OFF"

ADRS OPCODE OPERAND

49200

49202

49205

LDA#

STA

RTS

$0

$28A

When you want to use the programs, first load them into

memory either with LOAD "PRG NAME",8,1 (for Merlin and

Kids' Assembler files) or with the LOLOADER program for files

created with the Commodore ASSEMBLER64. When you want

your keys to repeat, just enter SYS 49152, and when you want to

turn off the repeat function, enter SYS 49200. (Congratulations,

you've just written your first utility programs in assembly

language!)

= = AUTO-LOADING MULTIPLE PROGRAMS = =

When you load more than a single machine language

PRG file from the immediate mode in BASIC, you have

to enter NEW after each load. However, Guy Grotke, in

his book Intermediate Commodore 64, shows a way to

load as many programs as you want with a BASIC loader

program. The essential problem with multi-loading from

a BASIC program is that each time you load a file, the

pointer goes back to the beginning of the BASIC pro-

138

gram. As a result, you get caught in an endless loop since

the program will simply keep re-loading the first pro

gram. However, since the BASIC program preserves its

variables, you can arrange things so that after loading the

first program, it will go on to load the next one. For ex

ample, the following programs show how to load the ON

and OFF files saved with Merlin's Apprentice and the

Kids' Assembler:

ON/OFF LOADER - MERLIN

10 IF X = 0 THEN X = 1 : LOAD "ON.O",8,1

20 IF X = 1 THEN X = 2 : LOAD "OFF.O",8,1

ON/OFF LOADER - KIDS'S ASSEMBLER

10 IF X = 0 THEN X = 1 : LOAD "ON 49152",8,1

20 IF X = 1 THEN X = 2 : LOAD "OFF 49200",8,1

What happens is that the first time through the program,

the IF/THEN statement in line 10 is evaluated as 'true'

and so the variable X is incremented by 1 and the first file

is LOADed. After the LOAD, the program does not go

to line 20, but because the pointers were reset by the first

LOAD, it starts all over again. However, because X is

now 1 instead of 0, Line 10 is ignored and the program

proceeds to line 20, evaluates the IF/THEN statement as

true, increments X by 1 and then LOADs the second pro

gram. By adding more lines and incrementing the X

variable, you can LOAD as many PRG files as you want.

(Ifyou have the Commodore assembler package, you will

have to write and save your programs as PRG files from

one of the MONITOR programs. Otherwise, using

ASSEMBLER64, your programs are saved as SEQ files

and they will have to be loaded with LOLOADER or

HILOADER 'by hand/) With that handy little program,

whenever you want your repeat key utility programs in

memory, just RUN the ON/OFF LOADER.

139

STORAGE ON YOUR SCREEN

A final place to STA values is right on your screen! Your screen

memory 40 x 25 matrix is located from 1024-2023 ($400-$7E7).

Overlaying the screen memory on the same matrix is the Color

Memory from 55296-56295 ($D800-$DBE7). Appendices H and I

provide maps of screen and color addresses to make it easy for you

to see where characters will be stored on the screen. When you store

a character on the screen, you also have to store a color or you

won't be able to see the character. (On the first Commodore 64's it

was unnecessary to store the color to see the characters.) The color

codes are the same as the ones for background and border colors,

0-15 ($0-$F), and the character codes are the ASCII values found in

Appendix J.

1024/55296

To align the character and

color, you use the offset 54272.

By adding the offset to your

screen memory address, you will

have the correct address of your

color under the character. For

example, if you look at the

Screen Memory Map in Appen

dix H, location 1484 is just

about in the middle of the

screen. Add 54272 + 1484 to

get the correct color address of

55756. If you look at the Color

Memory Map in Appendix I,

you will see that value also to be

about in the middle of your screen. The following shows you the

correspondence between the screen and color memories:

Screen & Color

Storage

2023/56295

Screen Color

1024

1025

1026

55296

55297

55298

140

1027

1028

55299

55300

2023 56295

Now, using LDA and STA, let's write a program that will put

something on the screen.

LABEL

GENERAL

OPCODE OPERAND COMMENT

{MERLIN}

{COMMODORE}

{COMMODORE}

ORG

*=$C000

JSR

LDA

STA

LDA

STA

RTS

.END

$C000

$E544

#0

55296

#88

1024

; Black

; 1st Color

Address

; 1st Char

Address

ADRS

49152

49155

49157

49160

49162

49165

KIDS' ASSEMBLER

OPCODE OPERAND

JSR

LDA#

STA

LDA#

STA

RTS

$E544

0

55296

88

1024

We've used the decimal value 88 before, and when we printed it

to the screen, we got an 'X.' This time, though, we get a 'spade'

character. If you look in Appendix J, the Set 1 character for 88 is

141

the spade. Set 2 is the X. Thus, you learned that when you LDA a

value and JSR $E716, the character printed is Set 2, but if you STA

the value of the accumulator at a screen address, you get the

character from Set 1. The color stored at the corresponding color

address give the character its color, not the background.

SUMMARY

With just a few opcodes, we've already been able to output

characters to the screen and even write a little utility program in

assembly language. The JSR, RTS, LDA, and STA opcodes are

heavily used in all assembly language programing, and so you're off

to a roaring start. We also learned about three different addressing

modes, and so in addition to the four opcodes, actually have an ad

ditional opcode since we learned to use LDA in the immediate and

absolute modes.

In the next chapter, we going to learn some new opcodes that will

add power to your programming. Right now, what we're doing is

equivalent to using a huge number of PRINT and POKE state

ments in BASIC. However, since we can access built-in subroutines

with JSR, we're actually further along in assembly programming

than we would be in learning BASIC. By taking each opcode a step

at a time, we are able to do a lot with a little; so be patient and forge

ahead!

142

CHAPTER 9

USING THE X AND Y REGISTERS

HOW TO USE TO X AND Y REGISTERS

In addition to your A register, you have two more heavily used

registers called X and Y. Like the opcodes referring to the A

registers that have an *A' in their name, such as LDA and STA, op

codes with X and Y refer to the X and Y registers. For example, to

load the X register, the opcode LDX is used. (Come on now, what

would the LoaD the Y register be?)

There are many uses of the X and Y registers, as there are for the

accumulator. Some subroutines read the X and Y registers to

calculate certain results. We saw in the last chapter how the "output

to screen" subroutine at $E716 took the ASCII value stored in the

accumlator and printed a character to the screen. Likewise the

PLOT subroutine at $FFF0 reads the X and Y registers to plot the

row and column position of the cursor. For example, if we wanted

to move the cursor to the middle ofthe screen on a 40 by 25 matrix,

we would want to specify a location of about 12/19. Let's see how

we can use the X and Y registers to output the contents of the A

register to the middle of the screen.

143

LABEL

GENERAL

OPCODE OPERANDCOMMENT

{MERLIN ORG

{COMMODORE *=$C00©}

JSR

LDX

LDY

CLC

JSR

LDA

JSR

RTS

{COMMODORE .END}

$C000}

$E544

#12

#19

$FFF0

#88

$E716

; Row number

; Column

number

; Clear the C

flag

;PLOT

subroutine

; Output to

screen

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

49152

49155

49157

49159

49160

49163

49165

49168

JSR

LDX#

LDY#

CLC

JSR

LDA#

JSR

RTS

$E544

12

19

$FFF0

88

$E716

First of all, we did something sneaky! We included an opcode not

yet covered, CLC. The CLC instruction CLears the Carry flag. The

reason we did that is because the PLOT subroutine at $FFF0 can be

used to either read the X/Y position of the cursor or to set it. If the

Carry flag is set; then it reads the X/Y position of the cursor and

144

store it in the X and Y registers. To set the position, the Carry flag

must be cleared. We did that with CLC.

Also notice where we used our LDA. We wanted to load the A

register afterthe JSR to the PLOT subroutine. The reason for this is

that the PLOT subroutine scrambles the A register. It doesn't do

this to make life difficult for the programmer, but rather the

subroutine itself uses the accumulator. Therefore if we LDA the ac

cumulator with our 88, to get an 'X' printed to our position PLOT-

ted, after the JSR to $FFF0, we get what we want.

The values for the X register with the PLOT subroutine at $FFF0

can be from 0-24 and the Y values from 0-79. Since the screen is

made up of 25 rows (0-24) the X register values make a lot of sense.

However, we know our screen has only 40 columns (0-39); so what

happens when we have Y values from 40-79? I'm not going to tell

you. You'll have to change the Y value in the above program to see

for yourself!

In addition to using the LDX and LDY instructions in the im

mediate addressing mode, it is also possible to use them in the ab

solute mode, just as we did with the LDA instruction. In fact, most

of the same addressing modes of the LDA instruction also apply to

the LDX and LDY instructions, but there are important exceptions

we will see in a bit.

TRANSFERS WITH TAX, TAY, TXA and TYA

Transferring information be

tween the A register (accumu

lator) and the X and Y registers

is handled by single byte instruc

tions. In looking at and remem

bering how to use TAX, TAY,

TXA and TYA, remember you

Transfer From-To.

T from A to X: TAX

T from A to Y: TAY

T from X to A: TXA

T from Y to A: TYA

TAX

145

If we have the value 22 in the accumulator and issue a TAX in

struction, the contents of the accumulator are transferred to the X

register. Now both the A register and the X registers would contain

the value 22. None of the Transfer instructions affect the contents

of the register from which the contents were transferred. In fact,

rather than actually transferring contents, the Transfer instructions

duplicate the contents in the target register. Therefore, you might

want to think of the Transfer instructions as Duplicate instructions.

Now, suppose you want to transfer the contents of the X register

into the Y register. There is no TXY opcode. If you really think

about it, though, I'll bet you can guess how to do it. (Think for a bit

before going on. Think. Think. Think.) Okay, time's up. If you

guessed you would transfer the X register to the accumulator with

TXA and then using TAY, transfer the contents ofthe accumulator

to the Y register, you're absolutely right. Thus, you will often see

the following:

TXA

TAY

Likewise, you can transfer the Y register to the X register using the

TYA-TAX sequence. Let's take a look at a program that will show

you some work with these registers. See if you can guess what will

be printed on your screen before you SYS your program.

GENERAL

LABEL OPCODE OPERAND COMMENT

{MERLIN ORG $C000}

{COMMODORE *=$C000}

JSR $E544

LDX #$54

TXA

JSR $E716

LDX #$41

TXA

STA 49200

146

LDY

TYA

JSR

LDY

TYA

JSR

RTS

{COMMODORE .END}

49200

$E716

#$58

$E716

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

49152

49155

49157

49158

49161

49163

49164

49167

49170

49171

49174

49176

49177

49180

JSR

LDX#

TXA

JSR

LDX#

TXA

STA

LDY

TYA

JSR

LDY#

TYA

JSR

RTS

$E544

$54

$E716

$41

49200

49200

$E716

$58

$E716

If you guessed the message is what transfers the contents of the

accumulator to the X register, you got it right! We did a lot of un

necessary transferring, but it was more to help you see what's going

on in your computer than an example of efficient programming.

Let's see what happened.

After clearing the screen, the X register was loaded in the im

mediate mode with $54 (84 decimal). That value was transferred to

the accumulator and then output to the screen. Thus, we got our

TV

147

After that, we loaded the X register with $41 (65 decimal) and

transferred it to the A register. Then the value was stored in address

49200 with the STA instruction. From the absolute mode we load

ed the value in 49200 into the Y register, and then transferred it to

the A register and printed it to the screen. That's where we got the

'A.'

Finally, the Y register was loaded with $58 (88 decimal), transfer

red to the accumulator with TYA and the output to the screen. This

was how the 'X' was produced.

At this point, it might seem that the transfer instructions do little

more than complicate an otherwise simple process; however, as we

go on, we will see how they can be very useful in programming. Our

above example was just to give you some practice in using them.

INCREMENTING AND DECREMENTING

WITH INX, INY, DEX AND DEY.

The incrementing and decrementing of the X and Y registers will

play a crucial role in your programming later on. Here, we're only

going to see what happens when the INX, INY, DEX or DEY in

struction occurs. Basically, when an INX or INY instruction is

issued, +1 is added to the X or Y register. With a DEX or DEY in

struction, 1 is subtracted from the X or Y register. By transferring

the values of the X and Y registers to the accumulator and sending

the results to the screen, we can graphically see what happens.

GENERAL - DEX

LABEL OPCODE OPERAND COMMENT

{MERLIN ORG

{COMMODORE *=$C000}

JSR $E544

LDX #90

LDY #65

TXA

148

JSR

TYA

JSR

DEX

TXA

JSR

INY

TYA

JSR

RTS

{COMMODORE .END}

$E716

$E716

$E716

$E716

; Output to

screen

; Subtract 1

from X register

; Add 1 to Y

register

KIDS' ASSEMBLER - DEX

ADRS OPCODE OPERAND

49152

49155

49157

49159

49160

49163

49164

49167

49168

49169

49172

49173

49174

49177

JSR

LDX#

LDY#

TXA

JSR

TYA

JSR

DEX

TXA

JSR

INY

TYA

JSR

RTS

$E544

90

65

$E716

$E716

$E716

$E716

You should have gotten the following on the upper left-hand cor

ner of your screen:

ZAYB

149

The 90 is ASCII value for 'Z' and the 65, the value for 'A'. Since

the X register was decremented, the next value would be 89, the

ASCII value for the letter *Y\ Conversely, since the Y register was

incremented, it went from 65 to 66 to produce the 'B\

FROM X AND Y TO MEMORY WITH STX AND STY

Rather than transferring the X and Y register values to the ac

cumulator, and then using STA, it is possible to directly store in

memory with STX and STY. The three-byte instructions work in

exactly the same way as STA except instead of storing the A

register's contents, the X or Y register's contents are stored in the

address specified in the operand. Thus, if you program,

STY$C10O

the contents of Y are stored in address $C100.

Let's do something useful with our new knowledge. We'll write

another utility program. This one will allow you to link two BASIC

files together. As you know, as soon as you LOAD a BASIC pro

gram into memory, the current one is replaced by the one just

LOADed. This is a real pain in the neck if you have a lot of

subroutines you'd like to append to a program you're working on.

For example, let's say that you have a handy sort routine stored in a

file named SORT. The program you're working on in memory

needs that program, but since you can't LOAD it without knocking

out your current program, you have key in the whole darned SORT

routine from scratch. Wouldn't it be nice if you could just append

the SORT routine without having to re-key it in? In fact, wouldn't it

be great if you could store all of your handy subroutines in separate

files, and just load them up into the file in memory? In that way you

could cut your BASIC programming time down considerably.

The next two assembly programs will allow you to LOAD a

BASIC file into memory and not destroy the contents of memory.

It does this by tricking BASIC into believing that the LOAD ad

dress of the second program is the beginning of BASIC RAM. Ac

tually, it loads the program onto the end of the program in

150

memory. This is done simply by resetting the pointers showing the

beginning of the BASIC program to the end of the program in

memory. Then, a second machine language program resets the

pointers to the actual beginning of BASIC thereby linking the two

programs together. The only constraint on these two little utilities is

that the second and subsequent programs you LOAD have to have

higher line numbers than the ones they're loaded on top of.

LABEL

GENERAL - APPEND

OPCODE OPERAND COMMENT

{MERLIN ORG

{COMMODORE *=$C000}

LDX

DEX

DEX

STX

LDX

STX

RTS

{COMMODORE .END}

GENERAL -

LABEL OPCODE

{MERLIN ORG

{COMMODORE *=$C030}

LDA

STA

LDA

STA

RTS

{COMMODORE .END}

$C000}

$2D

$2B

$2E

$2C

LINK

OPERAND COMMENT

$C030}

; Note address

change

#1

$2B

#8

$2C

151

MULTI-LOADER PROGRAM (Merlin)

10 IF X = 0 THEN X = 1 : LOAD "APPEND.O",8,1

20 IFX = 1 THEN X = 2 : LOAD "LINK.O",8,1

Since the addresses $2B-$2E are zero-page addresses, we need

special opcodes on the Kids' Assembler. The "-Z" on the end ofan

opcode indicates a zero-page operation. Only two bytes are used in

stead of three. The Merlin and Commodore assemblers

automatically recognize zero-page addresses and do not require

special indicators.

ADRS

KIDS' ASSEMBLER - APPEND

OPCODE OPERAND

49152

49154

49155

49156

49158

49160

49162

LDX-Z

DEX

DEX

STX-Z

LDX-Z

STX-Z

RTS

$2D

$2B

$2E

$2C

ADRS

KIDS' ASSEMBLER - LINK

OPCODE OPERAND

49200

49202

49204

49206

49208

LDA#1

STA-Z

LDA#

STA-Z

RTS

$2B

8

$2C

m- Note start adrs

MULTI-LOADER PROGRAM (Kids' Assembler)

10 IF X = 0 THEN X = 1 : LOAD "APPEND 49152",8,1

20 IF X = 1 THEN X = 2 : LOAD "LINK 49200",8,1

152

To see how to use your new utilities, enter the following two

BASIC programs, and SAVE each to disk or tape as PART 1 and

PART 2:

PARTI

10 REM PART 1

20 REM LOAD FIRST

PART 2

30 REM PART 2

40 REM APPENDS TO PART 1

After you have a copy of both programs SAVEd, load your two

machine files, APPEND and LINK, with the Multi-loader pro

gram. Next, LOAD "PART 1" and LIST the program. There

should be just two lines, 10 and 20. Now, SYS 49152. This will ac

tivate APPEND, and you can now LOAD "PART 2". When you

LIST the program again, you will see line 10-40 all together as a

single program. When you SYS 49200, the pointers will be reset,

and the two programs will be treated as a single large program.

The nice thing about machine language utility programs is that

they will stay in memory while to work with your BASIC files. You

can even RUN your BASIC programs without hurting them. In

that way, you can load the utilities at the beginning a programming

session and forget about them until they're needed to append and

link BASIC files.

ADDRESSING MODES WITH THE X AND Y REGISTERS

In the next chapter, we will see how important the X and Y

registers are in loops and branches. In fact, that is where their real

utility lies, saving you a lot of time in programming. At this point,

we will simply show you what the various addressing modes using

the X and Y registers do.

We have already seen that the immediate and absolute modes

with LDX and LDY work the same as with LDA. However, we can

153

also do indexed addressing using the X and Y registers as offsets to

our intended address.

INDEXED ABSOLUTE ADDRESSING

Basically, the way indexed addressing works with your programs

is to add the value of the X or Y register to the address in the

operand. For example, look at the following program:

GENERAL

LABEL OPCODE OPERAND COMMENT

LDX #0

TXA

STA $400,X ; Stores at $400

INX ; Add 1 to X

TXA

STA $400,X ; Store at $401

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

19152 LDX#

TXA

STA-X

INX

TXA

STA-X

0

$400

$400

The program simply loads the X register with 0, transfers the 0 to

the accumulator and then stores the 0 in the specified address

($400) plus the value of the X register. So the first value is stored at

$400 + 0, or $400. Then the X register is incremented by 1; so now

the value of X is 1 (0 +1 = 1). That is transferred to the ac

cumulator and stored in $400 + X. Since X is now 1, $400 + 1 =

$401. Therefore, even though the address in the operand is still in

dicated as $400, it is actually $400 + contents of the X register as

far as the computer is concerned. The following is the general for

mula of what occurs with indexed absolute addressing:

154

Indexed Absolute Addressing

ADDRESS = ADDRESS + VALUE

OF X OR Y REGISTER

To see how we can put this to use, let's pick a location that we can

see incremented. We know the screen addresses 1024-2023

($400-7E7) make up our screen memory and 55296-56295

($D800-DBE7) make up the color memory map. By using indexed

addressing, we can place values in those locations simply by in

crementing X or Y and storing our values in the starting addresses

offset by the X or Y registers.

GENERAL - INDEXED ADDRESSING

LABEL OPCODE OPERAND COMMENT

{Merlin

{Commodore

ORG

* =$C000}

JSR

LDA

STA

LDA

LDX

STA

STA

INX

STA

STA

INX

STA

STA

RTS

$0000}

$E544

#4

$D021

#1

#0

$D800,X

$400,X

$D800,X

$400,X

D800.X

$400,X

; Background

color

;Base color

adrs + X

;Base screen

adrs + X

{Commodore: .END}

155

KIDS' ASSEMBLER - INDEXED ADDRESSING

ADRS OPCODE OPERAND

49152 JSR

LDA#

STA

LDA#

LDX#

STA-X

STA-X

INX

STA-X

STA-X

INX

STA-X

STA-X

RTS

$E544

4

$D021

1

0

$D800

$400

$D800

$400

$D800

$400

The program clears the screen and turns the background color

purple. The value *V is loaded into the accumulator and '0' into the

X register. We will not be changing the value in the accumulator,

but simply storing it in the screen and color memory areas so that

we can see what's happening. The first storage location is at the base

addresses of $D800 and $400. The X register is incremented, and

the second STA is in $D801 and $401. TheX register is incremented

once again, providing indexed addresses of $D802 and $402. Your

screen results should be three white A's in the upper left hand cor

ner.

With our current set of instructions, we could have provided the

actual addresses ourselves and used a few less instructions.

However, using indexed addressing, it is a little more convenient to

use the X register to increment the base addresses. When we get to

loops, you will really see the use of indexed addressing. Finally, we

could have used the Y register as our index in exactly the same way.

The next two addressing modes are a little hairy and will be in

troduced here just to show you how they work. They will be more

156

useful as you become more advanced. You might want to skip this

last section and go on to the next chapter.

INDEXED INDIRECT ADDRESSING (X Register Only)

If you ever played pool, you probably know what a "bank shot"

is. Instead of making your shot to send the ball directly into a

pocket, you bounce it off the side first. Indexed indirect addressing

is a type of "bank shot" used to check, set or obtain a value. The

following illustrates the basic concept:

ADDRESS = POINTER STORED IN ZERO PAGE +

X REGISTER VALUE = LOCATION OF ADDRESS

In zero page ($0-FF) a set of

pointers are stored in 2 byte con

figurations. The low-byte is at

the lower address and the high-

byte is at the higher address. For

example, let's say you have

pointers stored in $FB-$FE

(251-254). They have the follow

ing contents:

$FB-$FC $AB $C0

$FD-$FE $D0 $C0

Indexed Indirect Shot

The addresses are stored low-byte / high byte, therefore we are ac

tually looking at $C0AB and $C0D0. Note that the two addresses

are not sequential. They do not have to be, but the pointers are se

quential. Therefore, since each pointer takes up two bytes, the in

dexing will have to be in steps of two.

When indexed indirect addressing is used, you either fetch a value

from the pointed-to address or store a value there. For example,

let's say that $C0AB has the value 10 ($0A) and $C0D0 has

20($14). Using the format,

or

LDA ($FB,X) ^-General

(LDA-X) $FB ^-Kids' Assembler

157

where X is the contents of the X register, you would load either the

contents of $00AB or $C0D0. Let's say the X register is *0\ The

following would occur:

LDA($FB,X)

$FB + 0 = $FB**-Get the address from $FB and $FC
$FB = $AB $FC = $C0

Address to get value = $C0AB

Contents of $C0AB = 10

Accumulator is loaded with 10

If the X register is incremented by 1, and indexed indirect ad

dressing is used, you'd be in trouble. That's because the pointer

would show $FB + 1 to be the beginning of the two byte address.

Thus, your load would be from,

$FC = $C0

$FD = $D0

which points to $D0C0. That address is in the I/O, Color RAM or

Character Generator area where you'd probably not be storing

variables. Instead, you'd want to be sure you indexed by 2. Suppos

ing the value of the X register is 2, you'd get the following:

LDX #2

LDA ($FB,X)

$FB + 2 = $FD <• Get the address from $FD and $FE

$FD = $D0 $FE = $C0

Address to get value = $C0D0

Contents of $C0D0 = 20

Accumulator is loaded with 20

158

One of the reasons we won't be using this addressing mode much

in this book is because it relies on a Zero-page address for its

pointers. Since the Kids' Assembler is written in BASIC and all

kinds of BASIC pointers are stored in zero-page, we'd be very

limited in the areas we could use. Also, since we will want to use our

machine language subroutines interactively with BASIC, we could

easily bomb the BASIC program we're working with if we stored

several pointers in zero-page. However, to give you a simple exam

ple of this type of addressing mode, try the following example:

GENERAL INDEXED INDIRECT ADDRESSING

LABEL OPCODE OPERANDCOMMENT

{Merlin

{Commodore

{Commodore

ORG

*=$C000}

JSR

LDY

STY

LDA

STA

LDA

STA

LDX

LDA

JSR

RTS

.END}

$C000}

$E544

#65

$C1®0

#$00

$FB

#$C1

$FC

#$0

($FB,X)

$E716

;Load Y with

ASCII 'A'

;Store Y in

$C100

;Low byte of

target adrs.

;Store in LB

pointer adrs.

;Highbyteof

target adrs.

;Store in HB

pointer adrs.

;Indexed in

direct LDA

;Output to

screen

159

= = ZERO-PAGE ADDRESSING = =

Zero page addressing has special machine language op

codes that are not apparent in most assemblers. The STA

instruction in the absolute mode has one opcode for non

zero page addressing and another for zero page address

ing. Thus, STA instructions for $100 and higher are in

terpreted as machine opcode $8D, but for locations of

$0FF and lower, the machine opcode $85 is used. Zero-

page addressing saves one byte compared with non-zero

page addressing since the operand address is one byte

($FF or less.) Since the Kids' Assembler has a one-to-one

correspondence between assembler opcode and machine

opcode, it is necessary to have special opcodes indicating

a zero-page operation, indicated by '-Z' extenders. This

method was used on the Append and Link programs in

this chapter already.

KIDS9 ASSEMBLER - INDEXED INDIRECT ADDRESSING

ADRS OPCODE OPERAND

49152 JSR

LDY#

STY

LDA#

STA-Z

LDA#

STA-Z

LDX#

(LDA-X)

JSR

RTS

$E544

65

$C100

$00

$FB

$C1

$FC

$0

$FB

$E716

The above program is a pretty weird way to get a crummy 'A'

printed to the screen. However, it shows what must be done to set

up indexed indirect addressing. First, the target address must be

160

given a value to use. Second, the low and high byte of the target ad

dress must be stored in zero-page. Finally, the X Register must be

given a value. After that is done, indexed indirect addressing is

possible. When you begin using tables of numbers, you can use the

X Register as an indirect pointer to the table. In the meantime, I

wouldn't spend a lot of time trying to use this mode.

INDIRECT INDEXED ADDRESSING (Y Register Only)

The final addressing mode we will discuss in this chapter is in

direct indexed. Like the indexed indirect, indirect indexed address

ing uses a zero-page pointer. However, instead of using the X

register, it uses the Y. Also, instead of pointing to a series of ad

dresses in zero-page, it points to a single address offset by the value

of Y. This addressing mode is much easier to use since it involves

only two bytes of zero-page. The following outlines the mode:

ADDRESS = POINTER STORED IN ZERO PAGE +

X REGISTER VALUE = LOCATION OF ADDRESS

For example, let's say you have pointers stored in $FB-$FC

(251-252). They have the following contents:

$FB-$FC $D1 $C0

Stored in low-byte / high-byte configuration, the base target ad

dress is $C0D1. In the indirect indexed mode, the actual address

would be $C0D1 + Y Register. Therefore, if the contents of the Y

register were 4, the target address would be $C0D1 + 4 or $C0D5.

For a table using sequential addresses, this method is useful for ac

cessing those addresses using Y as an offset. The format is,

LDA ($FB),Y «*- General

(LDA-Y) $FB -*- Kids' Assembler

Let's take a look at an example that will take values from three

consecutive two-byte addresses and print them to the screen. When

you execute the program, 'ABC will appear in the upper left hand

corner of your screen.

161

GENERAL INDIRECT INDEXED ADDRESSING

LABEL

{Merlin

{Commodore

{Commodore

OPCODE OPERANDCOMMENT

ORG $C000}

*=$C000}

JSR

LDX

STX

LDX

STX

LDX

STX

INX

STX

INX

STX

LDY

LDA

JSR

INY

INY

LDA

JSR

INY

INY

LDA

JSR

RTS

.END}

$E544

#$D1

$FB

#$C0

$FC

#65

$C0D1

$C0D3

$C0D5

#$0

($FB),Y

$E716

($FB),Y

$E716

($FB),Y

$E716

;Low byte target

adrs.

;Low byte

pointer

;High byte

target adrs.

;High byte

pointer

;ASCII 'A'

;Store in first

target adrs.

;Set Y to $0

162

KIDS' ASSEMBLER - INDIRECT INDEXED ADDRESSING

ADRS OPCODE OPERAND

49152

49155

49157

49159

49161

49163

49165

49168

49169

49172

49173

49176

49178

49180

49183

49184

49185

49187

49190

49191

49192

49194

49197

JSR

LDX#

STX-Z

LDX#

STX-Z

LDX#

STX

INX

STX

INX

STX

LDY#

(LDA-Y)

JSR

INY

INY

(LDA-Y)

JSR

INY

INY

(LDA-Y)

JSR

RTS

$E544

$D1

$FB

$C0

$FC

65

$C0D1

$C0D3

$C0D3

$C0D5

$0

$FB

$E716

$FB

$E716

$FB

$E716

$FB

$E716

As we pointed out, you won't be using the indexed indirect and

indirect indexed modes much at first. However, one of the best

ways to learn assembly language programs is to look at other peo

ple's work. By knowing about these two modes of addressing,

you'll be better able to understand what others are doing. In the

meantime, though, don't worry about them. You won't need them

much at the beginning level.

163

164

CHAPTER 10

LOOPS AND BRANCHES

PROGRAM STRUCTURES

At the first mention of program structure, a lot of people groan

that it's enough just to get the program done and working without

having to worry about "structured programming/' That's true,

and I certainly won't lecture on the merits of structured programm

ing except insofar as it makes life easier. All I want to do here is to

explain the fundamental structures in all programming. There are

only three!

SEQUENTIAL

So far, all we have dealt with

in assembly programs is the se

quential arrangement of instruc

tions. Each instruction is ex

ecuted one-after-the-other. It's

like climbing a ladder one rung

at a time going in the same direc

tion.

y Sequence

Task

Task

1

2

6

165

LOOPS

A loop is the second struc

ture. At a certain point in the

program, the program goes

back to an earlier part and does

it all over again. Most loops

have "escape clauses." That

means that after executing the

loop a given number of times or

meeting some other condition,

such as reading a keypress, it ex

its the loop and goes on to the

next sequential instruction.

You're familiar with the FOR/

NEXT loop in BASIC.

Loop

BRANCHES

A branch occurs when the

program can take two or more

courses of action. If one set of

conditions is met, then the pro

gram jumps to one place in the
Branch

program, and if another set of

conditions is met; then it jumps

to another. The IF/THEN

statement and GOTO and GO-

SUB statements in BASIC are

example of branch structures.

166

That's all there is to structure in programming. (Well, almost.)

It's painless, and as we will see, very important to make your job of

programming easier.

HOW BASIC LOGIC WORKS IN ASSEMBLY LANGUAGE

Remember that the fundamental difference between BASIC and

assembly language programming is that you have to provide more

information in assembly language than you do in BASIC. Other

wise, both use the same structures and logic. We've already seen

how sequential structure works in both types of programming. For

example, to clear the screen and print the letter 'A' to the screen, the

following two structures are used:

Sequence

BASIC

10PRINTCHR$(147)

20 PRINT "A"

Assembly

JSR $E544

LDA #65

JSR $E716

RTS

There's really not a lot of difference in the amount of work you

have to do for either. However, to print *ABC to the screen, there's

a big difference in the effort involved in sequential programming:

BASIC

10 PRINT CHR$(147)

20 PRINT "ABC"

167

Assembly

JSR $E544

LDA #65

JSR $E716

LDA #66

JSR $E716

LDA #67

JSR $E716

RTS

With math programs there is even a bigger difference in the

amount of work involved, but we'll get to that in the next chapter.

For now, it is enough to see that sequential structures in BASIC

take a lot less programming than in assembly language programm

ing.

LOOPING TO SAVE PROGRAMMING TIME

Let's say you wanted to print the alphabet to the screen. In

BASIC you could do something like the following:

10 PRINT "A"

20 PRINT "B"

30 PRINT "C"

etc.

However, you'd probably use a loop and enter something like the

following:

10 FOR X = 65 TO 90 : PRINT CHR$(X);: NEXT X

You use the loop structure because it takes a lot less time to program

and does the same thing as separate PRINT statements. In other

words, it's a smarter way to structure your program.

Now, if you can save steps in BASIC using loops, just think of

what you can save in assembly programming! Remember, since you

have to give a lot more instructions to get something done in

168

assembly language, if you could use those same instructions in a

loop, you could do a lot more with less code.

The question is, "How?" The best way to think of a loop in

assembly language programming is as a "branch back." In BASIC

when your program encounters a NEXT statement, it is really tell

ing the program to "branch back" to the FOR statement. Second

ly, there must be some kind of comparison or test to exit the loop;

otherwise you'd be stuck in an endless loop. With the BASIC

FOR/NEXT statement, the test is the top of the loop, (i.e., The last

number in the FOR statement.) In summary, the loop would look

as follows:

1. BEGIN LOOP

2. COMPARE FOR MATCH OR NO MATCH

3. IF NO MATCH GO BACK TO BEGINNING OF LOOP

4. OUT OF LOOP

Let's look at that in a BASIC program using a GOTO loop and

IF/THEN comparison to print the alphabet instead of the

FOR/NEXT statements:

10 X = 65 : REM INITIALIZE X

20 PRINT CHR$(X): REM BEGIN LOOP

30 X = X + 1 : REM INCREMENT X

40 IF X <> 90 THEN GOTO 20 : REM COMPARE AND

LOOP

50 PRINT "ALL DONE"

Now all we need are opcodes to Compare and Branch. For com

parison, we will use the following three:

Compare OPCODES

CMP Compare value with accumulator

CPX Compare value with X register

CPY Compare value with Y register

Next, we need Branch opcodes.

169

Branch OPCODES

BNE Branch not equal - <>

BEQ Branch if equal - =

Now, let's take a look at the

equivalent assembly program to

the last BASIC one:

LABEL

GENERAL - ALPHABET LOOP

OPCODE OPERAND COMMENT

{Merlin ORG $0)00}

{Commodore * = $C000}

LOOP

JSR

LDX

TXA

JSR

INX

CPX

BNE

RTS

$E544

#65

$E716

#91

LOOP

initialize X

with 65 - ASCII

A

;Increment X

; Compare X

with 91

; If X <>91

then branch

back to LOOP

170

KIDS' ASSEMBLER - ALPHABET LOOP

ADRS OPCODE OPERAND

49152

49155

49157

49158

49161

49162

49164

49166

JSR

LDX#

TXA

JSR

INX

CPX#

BNE

RTS

$E544

65

$E716

91

49157

Now the first thing to notice in the programs is the different ways

in which the branch was used. Generally, assemblers will have pro

visions for a LABEL field. In that field you can label your lines,

with the label serving as an address. In the Kids' Assembler, since it

has no label field, you have provide the address to the branch.

(That's one of the reasons the Kids' Assembler gives you the ad

dresses as you program.)

= = A BRANCH TOO FAR= =

At this stage of the game, you won't be likely to try a

branch that leaps more than a few addresses. If you do

branch more than 128 bytes backwards or 127 forward,

you'll get in trouble. All branch instructions are coded as

branch offsets between 0-255 ($0-$FF) in machine code

and not as addresses. That's why the branch instructions

are only two bytes instead of three. There is a trick to

branching further forward or backwards than 127 or

-128 by inserting a JMP instruction within the range of

your branch. However, you won't need it for the pro

grams in this book.

At the beginning of this chapter we looked at a program in

assembly language that printed 'ABC to the screen. It took eight

lines of code since we had to keep putting new values in the ac-

171

cumulator with LDA and then jumping to the screen output

routine. In the last program, we printed all 26 letters of the alphabet

also using eight lines. In other words, we were able to do almost

nine times the output with the same amount of code. As you can

see, using the loop structure saved us a lot of time.

INDEXING WITH LOOPS

In the Chapter 9, we examined indexed addressing with the X and

Y registers. Using indexed addressing we saved a little programming

time since we could increment our base address with X or Y and

didn't have to figure it out every time we wanted to use the next ad

dress. With loops, however, we can really do a lot with indexed ad

dressing. Take a look at the following assembly program to see how

we can send information to the sequential addresses of the screen

very easily.

LABEL OPCODE OPERANDCOMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

JSR $E544

LDX #0

LDY #1

START TYA

STA 55296,X

TXA

STA 1024.X

INX

CPX #255

BNE START

RTS

{Commodore .END}

172

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

49152

49155

49158

49161

49162

49165

49166

49169

49170

49173

49175

JSR

LDX#

LDY#

TYA

STA-X

TXA

STA-X

INX

CPX#

BNE

RTS

$E544

0

1

55296

1024

255

49161

The loop allowed us to use the base address for the character and

color screen, and indexing by X, store all 255 characters to the

screen. Using the Y value, we did the same thing with the correspon

ding color addresses on the screen.

The next programs we will examine, show us two things. First,

after running the BASIC version of the program, you will see the in

credible speed of a machine language program that does exactly the

same thing. Secondly, you will see how we can use several address

bases within a loop to speed things up. Since the A,X and Y

registers can only hold 255, by having offsets from the base ad

dresses, we can put these offsets in our program to access more than

the base address + 255, indexed by the X register. (Be sure to run

the BASIC program first, so that you can see what is happening on

the screen.)

BASIC - FILL SCREEN

10 PRINT CHR$(147)

20 FOR X = 0 TO 249

30 POKE 55296 + X,X : POKE 55546 + X,X

40 POKE 55796 + X,X : POKE 56046 + X,X

60 POKE 1024+ X,X : POKE 1274+ X,X

70 POKE 1524 + X,X : POKE 1774 + X,X

80 NEXT

173

LABEL

GENERAL - FELL SCREEN

OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore * = $C000}

JSR

LDX

LOOP TXA

STA

STA

STA

STA

STA

STA

STA

STA

INX

CPX

BNE

RTS

{Commodore .END

$E544

#0

55296.X ;Base color

addrs.

55546.X

55796.X

56046.X

1024.X ;Base screen

addrs.

1274.X

1524.X

1774.X

#250

LOOP

;Compare X

value with 250

KIDS' ASSEMBLER • FILL SCREEN

ADRS OPCODE OPERAND

49152

49155

49157

49158

49161

49164

49167

49170

49173

JSR

LDX#

TXA

STA-X

STA-X

STA-X

STA-X

STA-X

STA-X

$E544

0

55296

55546

55796

56046

1024

1274

174

49176

49179

49182

49183

49185

49187

STA-X

STA-X

INX

CPX#

BNE

RTS

1524

1773

250

49157

We used the value 250 for our test so that we could use four equal

blocks to fill the 1000 addresses of our screen. Also notice that we

used the same values for our color codes as the character codes.

NESTED LOOPS

In addition to using loops in assembly language just as you can in

BASIC, so too can you use nested loops. Like regular loops, nested

loops can save you a lot of programming time. For example, in our

last program, we had to put four base addresses as offsets for the in

dexed addressing we were using to fill up the screen. The reason we

had to do that was because of the 255 ($FF) limitation in the X

register. If the X register could hold 1000, we could have been able

to use a single base address for the character and color bases.

Using a slightly different example, we will now look at a way to

fill up your screen with printable characters using nested loops.

Since the JSR $E716 routine outputs to screen in sequential order,

as long as we JSR $E7161000 times, we can fill the screen. Now we

know that the X and Y registers are limited to 256 (0-255) before

they burp and fall over, but by using both registers and nested loop

ing, we can get up to 256 x 256 ($FFFF) passes through a loop. Let's

start with a BASIC program so we can leisurely watch it and then

do the same with an assembled machine language program. Notice

how in all cases, the second loop is inside the first loop. (We only

used ASCII 33-127 to output since the others are color changers and

screen scramblers.)

175

BASIC - NESTED LOOP

10 PRINT CHR$(147)

20 FOR Y = 0 TO 9 : REM LOOP1

30 FOR X = 33 TO 127 : REM LOOP2

40 PRINT CHR$(X);

50 NEXT X : REM BRANCH TO LOOP2

60 NEXT Y : REM BRANCH TO LOOP1

GENERAL - NESTED LOOP

LABEL OPCODE OPERAND COMMENT

{Merlin

{Commodore

LOOP1

LOOP2

ORG

*=$C0G

JSR

LDY

LDX

TXA

JSR

INX

CPX

BNE

I NY

CPY

BNE

RTS

$0000}

10}

$E544

#0

#33

$E716

#127

L00P2

#10

L00P1

KIDS' ASSEMBLER - NESTED LOOP

ADRS OPCODE OPERAND

49152

49155

49157

49159

49160

49163

JSR

LDY#

LDX#

TXA

JSR

INX

$E544

0

33

$E716

176

49164

49166

49168

49169

49171

49173

CPX#

BNE

INY

CPY#

BNE

RTS

127

49159

10

49157

You may have noticed the the program was a little slower than

our last one. That was because the JSR $E716 takes more time than

a simple STA. The JSR involves executing a subroutine and return

ing, while the STA is a single machine language instruction.

BRANCHING FORWARD WITH JMP, BEQ AND BNE

As we have seen with our loops, the branching that occurs is all

backwards. You might ask, "Why jump forward? Why not com

plete a task, either with or without a loop and then go on to the next

part of the program?" The essence of good programming is what's

called a "Top Down" structure. You begin at the beginning and

proceed in an orderly, sequential fashion to the end ofthe program.

Jumping all over the place is called "spaghetti" programming.

Essentially, structured programming looks like the following:

TASK 1

ALL DONE? (YES/NO)

- NO: GO BACK AND FINISH

- YES: GO ON TO NEXT TASK

TASK 2

^CHECK^ ALL DONE? (YES/NO)

- NO: GO BACK AND FINISH

- YES: GO ON TO NEXT TASK

TASK END

^CHECK^ ALL DONE? (YES/NO)

- NO: GO BACK AND FINISH

-YES: EXIT PROGRAM

177

y.

Unstructured program

Using structured programm

ing techniques, you can save a

lot of time and have your pro

grams run better. However,

treat structured programming

techniques as tools and not

religion! The Top-Down struc

ture is important, but there are

exceptions to its strict interpreta

tion. Every time you JSR to a

subroutine, you leave the se

quential path, and there will be

instances where a task is ac

complished in an unstructured

fashion. Just remember though,

the more structured your pro

gram the easier it is to write, run

and debug.

TASK1

The following situation is a common one in assembly language

programming:

In TASK 1, your program loops

until the exit condition is met.

Depending on the outcome of

the loop, your program will

branch to Path 1 or Path 2. If it

goes to Path 1, you do not want

it to go through Path 2 as well.

This is where the JMP instruc

tion comes in. If your program

is to branch to Path 2, you can

simply JMP, BEQ or BNE to

the beginning of Path 2. How

ever, if you take Path 1, you're

probably going to have to take

an unconditional jump using the

JMP instruction. Look at the

following program:

178

In TASK 1, your program loops until the exit condition is met.

Depending on the outcome of the loop, your program will branch

to Path 1 or Path 2. If it goes to Path 1, you do not want it to go

through Path 2 as well. This is where the JMP instruction comes in.

If your program is to branch to Path 2, you can simply JMP, BEQ

or BNE to the beginning of Path 2. However, if you take Path 1,

you're probably going to have to take an unconditional jump using

the JMP instruction. Look at the following program:

LABEL OPCODE OPERAND COMMENT

LOOP

PATH1

PATH2

END

LDX

INX

CPX

BNE

CPX

BEQ

INX

TXA

JSR

JMP

DEX

TXA

JSR

RTS

#0

$C20©

LOOP

$8000

PATH2

$E716

END

$E716

;Keep looping

until X= con

tents of $C200

;After loop is

X = contents of

$8000?

;lf equal then

PATH2

;Jump over

PATH2 to end

In the above program, locations $C200 and $8000 have variable

values stored. The X register is incremented until it is equal to the

contents of $C200. When X equals that amount, X is compared

with the contents of $8000. If they're equal, the program takes

PATH2; otherwise it takes PATH1. At the end of PATH1, it

JuMPs over PATH2 to the END of the program. (The above pro

gram is hypothetical to illustrate a point. If you want to run it, pro

vide values for $C200 and $8000.)

179

In Chapter 12 when we discuss interacting with a program from

the keyboard, you'll be using JMP and BEQ more frequently. In

the meantime, let's look at a little program that uses both BEQ and

JMP.

GENERAL - BEQ AND JMP

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

START

LDX

TXA

JSR

CMP

BEQ

INX

JMP

RTS

#65

$E716

#90

END

STAR"

END

KIDS' ASSEMBLER

ADRS OPCODE OPERAND

49152

49154

49155

49158

LDX#

TXA

JSR

CMP#

65

$E716

90

All the program does is print the alphabet to your screen by in

crementing X until it reaches the value 90. We could have done the

same thing with BNE and used less code, but it did allow us to place

the INX after the comparison and branch instructions. The main

point of the program was to illustrate how BEQ and JMP work.

180

SUMMARY

The main point of this chapter was to show you ways to make

assembly language programming easier. Just as in BASIC where

you can cut down considerably on the amount of work you do by

using loop structures, loops in assembly language save you a good

deal of time as well. Perhaps the most important thing to remember

is using loops with X and Y indexed addressing. The base address of

a block ofRAM can be accesses with a minimal amount ofprogram

code.

Overall, you can think of the three structures in programming,

sequential, loop and branch, in the same way you would in BASIC.

In solving a programming problem, use the same structural tools

you would in BASIC. The substitution is in the instructions you

give; not the fundamental logic of those structures. In the next

chapter, we will take a look at some additional instructions that can

be used to structure your program and save you time.

181

A

182

CHAPTER 11

ADDING AND SUBTRACTING

INCREMENTING AND DECREMENTING MEMORY :

INC AND DEC

We saw that we could increase or decrease the value ofthe X and

Y registers with INX, INY, DEX and DEY. By using the X and Y

registers, we could indirectly increase or decrease the value in

memory. For example, the following program would increment the

contents of location $C100 using the X register:

LABEL

START

OPCODE OPERAND

LDX

STX

INX

CPX

BNE

RTS

#$0

$C100

#$FF

START

That method works fine, and the same could be done with the Y

register and decrementing values as well. However, there will be oc

casions when you will want to use the X or Y registers for something

else while incrementing or decrementing values. For example, sup

pose you want to use the X register for an inside loop, the Y register

183

for an outside loop, incrementing both registers but you wanted to

decrement the values in a series of addresses.

The INC instruction simply increments the value ofthe target ad

dress by one in the absolute mode. For example, if location $C100

contained the value 5,

INC $C100

would increment the value in $C100 to 6. Similarly, if DEC had

been used, the value would be decreased by 1 to 4.

To see how INC works, we'll write a program that will run

through the alphabet for us. (Nothing new, but it shows us what's

happening. Wait'll we get to graphics and use these instructions!)

GENERAL - ABSOLUTE INC

LABEL OPCODE OPERANDCOMMENT

{Merlin ORG $C000}

{Commodore * = $C000}

START

{Commodore

LDA

STA

INC

LDA

JSR

CMP

BNE

RTS

.END}

#64

$C100

$C100

$C100

$E716

#90

START

KIDS' ASSEMBLER - ABSOLUTE INC

ADRS OPCODE OPERAND

49152 LDA# 64

49154 STA $C100

49157 INC $C100

184

49160

49163

49166

49168

49170

LDA

JSR

CMP#

BNE

RTS

$C100

$E716

90

49157

In the above example, we used INC in the absolute mode. Both

INC and DEC opcodes can be used in the indexed addressing mode

as well. For example, if we changed the above program, we could

INCrement a whole series of addresses with $C100, as the base.

Fill with INC

LABEL

GENERAL - INDEXED INC

OPCODE OPERANDCOMMENT

{Merlin

{Commodore

START

{Commodore

ORG

* = $C000}

LDX

LDA

STA

INC

LDA

JSR

INX

CPX

BNE

RTS

.END}

$0000}

#0

#64

$0100

$C100,X

$C100,X

$E716

#90

START

KIDS' ASSEMBLER - INDEXED INC

ADRS OPCODE OPERAND

49152

49154

49156

LDX#

LDA#

STA

0

64

$C100

185

49159

49162

49165

49168

49169

49171

49173

INC-X

LDA-X

JSR

INX

CPX#

BNE

RTS

$C100

$0100

$E716

90

49159

The results of this program may surprise you. At first, you may

have thought you'd get the alphabet printed to the screen and then

stored in sequential addresses from $C100-$C11A (49408-49434).

That would make a nice table, but that's not what we got. Instead,

as you can see from the mess on your screen, after getting the *A* as

expected, the rest is garbage, the reason for that lies in the fact that

we were changing the addresses and INCrementing each new ad

dress by 1. Thus, while we stored the value 64 in $C100 and then in

cremented it by 1 to get 65 (the 'A' you saw on your screen), we then

INCremented $C101, which was empty (or full of junk) by 1. That

junk was sent to the accumulator and output to the screen. We'll

need some new instructions to get what we need. (I'll bet you're

smart enough to figure out how to get the alphabet stored in a table

without any new instructions, though. Have the Y register help you

out.)

ADDING AND SUBTRACTING IN THE ACCUMULATOR :

ADC AND SBC

The ADC and SBC allow you to ADd to the accumulator with

Carry or SuBtract from the accumulator with Carry. Instead of in

crementing or decrementing with transfers from the X or Y registers

or memory, you can add and subtract as much as you want in just

about all modes. The statement,

ADC #09

adds + 9 what whatever is in the A register. In the absolute mode,

ADC $C100

186

adds the contents of location $C100 to your accumulator. For ex

ample, the following program will print 'AZ' to your screen by

adding 25 to the accumulator which already contains 65:

GENERAL - INDEXED ADC

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

LDA #65

JSR $E716

ADC #25

JSR $E716

RTS

{Commodore .END}

KIDS' ASSEMBLER - INDEXED INC

ADRS OPCODE OPERAND

49152

49154

49157

49159

49162

LDA#

JSR

ADC#

JSR

RTS

65

$E716

25

$E716

USING CLC AND SEC

With a single ADC instruction, we can make giant leaps instead
of relying on a series of INX's, INY's or INC's. However, when we

start to use a series of ADC's, it's necessary to clear the carry flag.

(In fact it's a good idea whenever ADC is used.) To do that, you

simply use the sequence shown in the following example:

CLC

ADC #$D3

187

The reason for clearing the carry

flag (the C flag - remember NV

SDIZC?) is because the carry

flag may have been set by some

other operation. When you

ADd with Carry, you add the in

tended number along with the

Carry if it is set. For example, a

JSR to an output routine may

set the carry flag. In the follow

ing program where the accumu

lator is incremented by two each

time the program loops, the

CLC instruction makes sure that

the contents of the accumulator

are incremented only by two and

not two plus the carry. If you

want to see the results without

CLC, delete the CLC instruc

tion and place the START label

in the ADC line.

Pick up your room

get a haircut, and

remember to

CLC
before you

ADC

GENERAL - ADC BY TWO'S

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C0®0}

{Commodore *=$C000}
r*****************

9

. *

9

. *

9

ADC BYTWO'S
*

*

r *****

START

JSR

LDA

CLC

ADC

JSR

$E544

#63

#2

$E716

188

CMP #89

BNE START

RTS

{Commodore .END}

KIDS' ASSEMBLER - ADC BY TWO'S

ADRS OPCODE OPERAND

49152

49155

49157

49158

49160

49163

49165

49167

JSR

LDA#

CLC

ADC#

JSR

CMP#

BNE

RTS

$E544

63

2

$E716

89

49157

= = GETTING FANCY = =

We used a box of stars (asterisks) in our general assembler

program to show you how to give your source code a hot

shot header. On most assemblers, if the first character is a

semi-colon, the entire line is read as a comment. It's sort

of like having REM statements use entire lines for headers

in BASIC programs. On the Merlin Apprentice assem

bler, you don't even need the semi-colon. If your first en

try is CTRL-P, you'll get a line of stars. If you hit the

space bar and press CTRL-P the first and last spaces will

get stars. It helps to have headers so that you can quickly

see what the source code is for. This is especially true if

you're working with a lot of different assembly language

programs. It is also a good idea to put the date in the

header so that you will know when you last worked on the

program. With larger programs, you may make several

versions, and the dates will keep you posted on which ver

sion you have in the editor.

189

Now, this next part is weird; so put down your root beer and

listen up. When we want to ADC, it's important to clear the carry

flag with CLC. However, when we subtract from the accumulator

with SBC we want the carry flag set; so we use SEC to set the carry

flag. The reason for this is that in subtraction, the set carry flag is

treated as though no borrow is taken; just the reverse of ADC.

What you're really doing is called "two's compliment" addition

since that's the way your 6510 can best handle subtraction. It sort of

uses the carry flag to "add backwards." Rather than losing sleep

over the process, just remember:

SUBTRACT - SEC

Use the format in the following example:

SEC

SBC #$08

Okay, we're all set to use subtract. We'll go backwards in the

alphabet printing only every third character. In that way you can see

how the process works.

GENERAL - SBC BY THREE'S

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $0000}

{Commodore *=$C000}

START

SBC BYTHREE'S

JSR

LDA

SEC

SBC

JSR

CMP

$E544

#93

#3

$E716

#66

*

*

;Set the Carry

;Subtract 3 from

the accumulator

190

BNE

RTS

{Commodore .END}

START

KIDS' ASSEMBLER - BY

ADRS OPCODE OPERAND

49152

49155

49157

49158

49160

49163

49165

49167

SUMMARY

JSR

LDA#

SEC

SBC#

MSR

CMP#

BNE

RTS

$E544

93

3

$E716

66

49157

This has been a short chapter, but we learned some important

new instructions for adding and subtracting numbers. We did not

tackle the more difficult problems of dealing with numbers larger

than 255 ($FF) since that gets a little hairy. If you want to add 2 +

2, stick with BASIC for the time being, and the same is even truer

when dealing with multiplication and division. Larger numbers can

be handled in assembly language using two addresses, and when

you become more advanced, you'll learn either how to use JSR's to

BASIC subroutines or how to write your own arithmetic programs.

As you will see, we'll have our hands full just dealing with values a

single register or address can handle.

191

192

CHAPTER 12

INTERACTING WITH

ASSEMBLY LANGUAGE PROGRAMS

Introduction

Up to this point we've been concentrating on the fundamental in

struction set in 6510 assembly language. Everything we've done has

been "locked" into the program. That is, we have no way outside

of writing the actual program of affecting what course of action the

program will take. When the program is SYSed, it takes a pre

determined course the user cannot influence while the program is

running. What we've done so far is similar to programming in

BASIC without INPUT or GET statements. In this chapter, we're

going to turn our attention to some simple I/O (input/output)

routines. These will give you some real programming power, and

you won't have to learn any new opcodes.

All commercial software "interacts" with the user. When you

play an arcade game or use a word processor, your input affects

what the program does. For example, in arcade games, the program

takes its input from paddles or joysticks. Ifyou press a button, your

game fires a missile, and if you move the joystick to the left, your

character moves to the left. Similarly, in word processing, your

keyboard is the primary input device. Your program stores the in-

193

formation supplied by the keystrokes, and that information will be

different depending on what keys you hit.

Fortunately, there are several built-in routines for handling I/O,

and while these routines may use some very complicated and

sophisticated code, all you are going to have to do is to know when

to JSR to these subroutines. There are a number of "formulas''

you'll have to learn since jumping to these subroutines can affect

other parts of your program, but these formulas are fairly simple

and direct. Moreover, we will concentrate only on those subroutines

that affect input from the keyboard, joysticks or game paddles. We

will not deal with tape or disk I/O. Since we have already dealt ex

tensively with output in our examples of printing characters to the

screen, most of this chapter will concentrate on input.

READING INPUT FROM THE KEYBOARD

Have you ever wondered what actually happens when you press a

key? You know that your computer handles everything in binary

configurations, and so if you press the 'K' key, a big 'K' doesn't go

floating into your computer and up to the screen. We'll break down

what happens when you press the letter *K' to show you the path

from the keyboard to your screen.

1. Scan the keyboard.

2. Get the character from the keyboard and put it in the A

register

3. See if the key is null (no key has been pressed)

4. If the key is null, go back to Step 1 and scan again.

5. Print the character in the A register to the screen.

Since we have sent ASCII characters from the A register to the

screen by storing them on the screen or JSRing to an output routine,

we already know how to do the last part. What we need is a routine

to scan the keyboard and to get it from the keyboard to the ac

cumulator.

To do that we will use Kernal routines, SCNKEY and GETIN.

The SCNKEY subroutine is located at $FF9F (65439) and the

GETIN routine at $FFE4 (65508). For output, instead of using

194

$E716, we'll use CHROUT (Character Out) at $FFD2 (65490).

Thus, our sequence of subroutines will be:

1. SCNKEY - Scan the keyboard

2. GETIN - Put the key value in A register

3. CHROUT - Output the character to the screen

Knowing that, we can try out a routine that will print characters to

the screen based on keyboard input:

= = LABEL YOUR SUBROUTINES = =

With most assemblers, (not the Kids' Assembler,

though) it is possible to define and label subroutines.

Then when you want to use a subroutine, instead ofdoing

a JSR to the specific address, the JSR is to the subroutine

label. For example, instead of,

JSR $E544

you can,

JSR CLEAR

This method is more descriptive and easier to remember

than memorizing all the different addresses that contain

the subroutines. Unfortunately the Kids' Assembler does

not have a label field, but most other assemblers do.

GENERAL • KEYBOARD TO SCREEN I/O

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

{Commodore}

CLEAR =$E544

SCNKEY =$FF9F

195

GETIN

CHROUT

{Merlin}

CLEAR

SCNKEY

GETIN

CHROUT

SCAN

{Commodore

= $FFE4

= $FFD2

EQU

EQU

EQU

EQU

JSR

JSR

JSR

BEQ

JSR

RTS

.END}

$E544

$FF9F

$FFE4

$FFD2

CLEAR

SCNKEY

GETIN

SCAN

CHROUT

;Look to see if

key is pressed

;Put key value in

accumulator

;Compare with

zero

;lf not zero print

to screen

KIDS' ASSEMBLER -

KEYBOARD

ADRS

49152

49155

49158

49161

49163

49166

TO SCREEN

OPCODE

JSR

JSR

JSR

BEQ

JSR

RTS

<
I/O <*

OPERAND

$E544

$FF9F

$FFE4

49155

$FFD2

Scanning Keyboard

196

The program involves only two instructions, not counting the

RTS. Comparing the code in the Kids' Assembler with the

assemblers using labels, you can see how much clearer it is using

labels. When we start doing more forward jumps and branches, the

labels are almost indispensable. (Be sure to note the different ways

that the Commodore assembler and Merlin handle labels.)

Since the program only printed out a single character before end

ing, we didn't get a chance to do much. What we need is a program

to keep reading the keyboard until a certain key is pressed to let us

know it's time to quit. We'll write a program that prints the key

pressed to the screen until RETURN is pressed. This will involve a

double comparison.

1. Compare key with null

2. Compare key with RETURN.

When you run this program, be sure to try out your CTRL keys

was well as you regular keys. Turn on the RVS (reverse) and take it

through its paces. (If you're smart and you're using a decent

editor/assembler, instead of rewriting the whole thing from scratch,

you'll just edit the last program to make this one. From this point on,

especially when you're writing your own original programs, you will

begin to see the severe disadvantages ofthe Kids' Assembler. Instead

of blowing your money on an arcade game, next time you got a few

bucks to spend, get a good assembler.)

GENERAL - READ RETURN

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $0000}

{Commodore * = $0000}

{Commodore}

CLEAR

SCNKEY

GETIN

CHROUT

= $E544

= $FF9F

= $FFE4

= $FFD2

197

{Merlin}

CLEAR

SCNKEY

GETIN

CHROUT

SCAN

END

{Commodore

EQU

EQU

EQU

EQU

JSR

JSR

JSR

BEQ

CMP

BEQ

JSR

JMP

RTS

.END}

$E544

$FF9F

$FFE4

$FFD2

CLEAR

SCNKEY

GETIN

SCAN

#$0D

END

CHROUT

SCAN a

;Compare with

ASCII for

RETURN (13)

;Jump to end of

program if

RETURN is

pressed

I Label ififc
I; Your jj^B
VSubroutines^Hl

KIDS' ASSEMBLER -

READ RETURN

ADRS OPCODE OPERAND

49152

49155

49158

49161

49163

49165

49167

49170

49173

JSR

JSR

JSR

BEQ

CMP#

BEQ

JSR

JMP

RTS

$E544

$FF9F

$FFE4

49155

SOD

49173

$FFD2

49155

198

Now we can see how we can have one of two branches using the

keyboard. If we press any key other than RETURN, we'll get the

character or the special effects, such as color change or reverse, on

the screen. We loop through the SCAN very much like we'd use the

GET statement in BASIC.

10 GET A$: IF A$ = "" THEN 10

We just keep looping until we get something other than a null.

Then, like BASIC, we use the IF/THEN logic to either print the

character and go get another one or quit. The same thing in BASIC

would look like the following:

10 GET A$: IF A$ = "" THEN 10

20 IF A$ = CHR$(13)THEN END

30 PRINT A$: GOTO 10

Now that we have learned how to use IF/THEN logic with infor

mation from the keyboard and can branch in more than one direc

tion, let's use several branches. While we're at it, we'll also supply a

prompt and do something other than just printing characters to the

screen. A simple routine we already have used is changing the

background color on the screen with a JSR to $D021. Instead of

entering the color value, we'll enter a letter value for the color and

have a subroutine supply the color value. (We're really getting hot.)

First of all, how do we make a prompt? Since the prompts tell us

what to do, they're very important in programs. In BASIC, using

the GET statement, we simply use PRINT. For example,

10 PRINT "PRESS A KEY "

20 GET A$: IF A$ = "" THEN 20

30 PRINT A$: GOTO 10

asks you to PRESS A KEY and then prints it to the screen.

Since we know that whatever is in the accumulator will be printed

to the screen with a JSR to CHROUT ($FFD2) all we have to do is

to load up the accumulator with our prompt and print it to the

199

screen. We're going to change the color of the screen; so we'll use

COLOR? as our prompt.

Once we have the prompt, we can use our SCNKEY and GETIN

subroutines to read the keyboard and put the results in the ac

cumulator. Now, since we want to change the background color,

we will JSR to $D021. However, the background colors 0-15 re

quire CTRL keys, and we want to use regular keys. To keep it

relatively simple, we'll just change to background colors to (R)ed or

(G)reen. If *R' is pressed, the background will turn red and *G' will

turn it green. Also, to get out of the program, RETURN will cause

an exit. Otherwise, the program will do nothing. Thus, we will have

branches on the following:

1. IF RETURN (ASCII = $0D or 13) is pressed THEN goto

the end of the program.

2. IF an R (ASCII = 82) is pressed THEN put a 2 in loca

tion $D021.

3. IF an G (ASCII = 71) is pressed THEN put a 5 in loca

tion $D021.

Using the labels END, RED and GREEN it is very simple to

indicate where our branches are going and what they are do

ing. This is why the Kids' Assembler is difficult. You have to

figure out the address to branch aheadbefore that address is on

the screen. This means that you have to determine the number of

bytes that will be used in the program lines so that you will have the

right address on a forward branch. Using the LABEL field,

however, all you have to do is to put in the label name in the

operand, and when you get to the subroutine, use that label at the

beginning of the line. (Using the Kids' Assembler, though, you'll

really understand what's going on inside your machine. This will

turn you into a "mean" assembly language programmer and make

programming with a good assembler a snap.)

200

GENERAL • RED/GREEN BACKGROUND

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

RED/GREEN BACKGROUND

r * * * *

*

*

*

{Commodore}

CLEAR

SCNKEY

GETIN

CHROUT

BKGND

{Merlin}

CLEAR

SCNKEY

GETIN

CHROUT

BKGND

= $E544

= $FF9F

= $FFE4

= $FFD2

= $D021

EQU

EQU

EQU

EQU

EQU

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

$E544

$FF9F

$FFE4

$FFD2

$D021

CLEAR

#67

CHROUT

#79

CHROUT

#76

CHROUT

#79

CHROUT

#82

CHROUT

#63

CHROUT

#0

;c

;o

;L

;0

;R

;Null the

accumulator

201

SCAN

RED

GREEN

END

{Commodore

JSR

SCNKEY

JSR

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

JMP

LDA

STA

JMP

LDA

STA

JMP

RTS

.END}

GETIN

SCAN

#$0D

END

#82

RED

#71

GREEN

SCAN

#2

BKGND

SCAN

#5

BKGND

SCAN

;Was RETURN

pressed

;lf so, goto END

;WasR

pressed?

;lf so, goto RED

;Was G pressed

;lf so, goto

GREEN

;lf none of the

above, go get

another key

;Color code for

RED

background

;Color code for

GREEN

background

;Go get another

key

KIDS' ASSEMBLER • RED/GREEN BACKGROUND

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

JSR

LDA#

JSR

LDA#

JSR

LDA#

$E544

67

$FFD2

79

$FFD2

76

202

49167

49170

49172

49175

49177

49180

49182

49185

49187

49190

49193

49195

49197

49199

49201

49203

49205

49207

49210

49212

49215

49218

49220

49223

49226

JSR

LDA#

JSR

LDA#

JSR

LDA#

JSR

LDA#

JSR

JSR

BEQ

CMP#

BEQ

CMP#

BEQ

CMP#

BEQ

JMP

LDA#

STA

JMP

LDA#

STA

JMP

RTS

$FFD2

79

$FFD2

82

$FFD2

63

$FFD2

0

$FF9F

$FFE4

49187

$0D

49226

82

49210

71

49218

49187

2

$D021

49187

5

$D021

49187

NOTICE: If you do not have a joystick, you can skip this next

section. However, you may want to go over the part on using

the EOR instruction.

JOYSTICK CONTROL

Using GETIN we can take the value of a keypress and put it in

the accumulator. With the joystick however, we do not have a

SCNKEY and GETIN routine. Therefore, we will have to build our

own. We'll look at reading the joystick in Port 1 and fire button

only. However, Port 2 is read in the same way as Port 1 except from

a different address. Therefore, if you know how to read the joystick

in Port 1, reading it Port 2 is essentially the same. For Port 1, we

203

read the value at address $DC01 (56321) and for Port 2,

$DC00(56320). Let's now look to see what happens when you use

the joystick and the register at $DC01.

Register at $DC01

7 6 5 4 3 2 10 -*-Bit number

XXXFRLDU ^-Switch read

X = Unused by joystick

F = Fire button

R = Joystick right

L = Joystick left

D = Joystick down

U = Joystick up

Not pressed = 1

Pressed = 0

For example, if the joystick is in a neutral position, all switches

are read as "not pressed." Therefore, the register would look like

the following:

Register at $DC01

7 6 5 4

X X X F

3 2 10

R L D U

i-Bit number

i-Switch read

11111111 i-Bit configuration

for neutral

That's simple enough to read since the register is filled up. We know

a single 8 bit register can only hold 255 ($FF) so when the joystick is

in neutral, the value read at $D0C1 is 255 or $FF. Now, let's take a

look at what happens when we move the joystick to the left.

204

Register at $DC01

7 6 5 4 3 2 10 -^-Bit number

XXXFRLDU ^-Switch read

~~1 1 1 1 1 0 1 1 -4- Bit configuration
for left.

When we press the joystick to the left, Bit #2 is turned off to give us

the binary value, 111111011. Unless you're a lot better at reading

binary numbers than I am, that's not easy to figure out. The value is

251 ($FB), but I had to do a lot of computations to get it. There's

got to be a simpler way to read the $DC01 register.

The EOR Instruction

To make things easier for ourselves, we're going to learn a new

instruction, EOR. This instruction is the mnemonic for "Exclusive

OR." This instruction compares bits to see the differences. If there

is a difference between two bits, you get a "1", and if there are no

differences, you get "0." This serves to "mask" or "filter" values

so that they can be handled easier. To see how it works, let's take

our last example and see what it looks like EORed with $FF.

Register at $DC01

7 6 5 4 3 2 10 -^-Bit number

XXXFRLDU ^-Switch read

111110 11 *- Bit configuration

for left.

11111111 ^-$FFbit

configuration

0 0 (!) 0 0 1 0 0 -*-EORed with $FF

Now that's a lot easier to figure out. Instead of 251, we have a

value of 4. Since bits 7,6 and 5 are not used, we can do relatively

quick translations of binary to decimal or hex:

205

16 8 4 2 1 -^-Multiple if "on."

4 3 2 1 ' 0 -4-Bit number

F R L D U

10 1 1 1

11111

0 1 0 0 0 -^-EORed value

Looking at the above example, what is the value when thejoystick is

to the right? Ifyou think the value after EORwith $FF is 8 then you

are right. If the fire button is pushed, what would the value be? It

would be 16. With the joystick in neutral, we saw that the value was

$FF or 255 - all eight bits have a "1". After EOR with $FF you

would have the following:

Regis

7

X

1

1

ster

6

X

1

1

at$DC01

5

X

1

1

4

F

1

1

3

R

1

1

2

L

1

1

1

0

1

1

0

u

1

1

-4- Bit number

m-Switch read

<4-Bit configuration

for left.

^■$FF bit

configuration

00 0 0 00 0 0 ^-EORedwith$FF

Now, neutral is "0", which is a lot easier to remember..

What happens when your joystick is at an angle, such as up-left?

Well, let's just stick the numbers in and see what we get.

16 8 4 2 1 ^-Multiple if "on."

4 3 2 1 0 «*-Bit number

F R L D U

11 0 1 0

11111 «*-$FF

0 0 10 1 -^-EORed value

206

A simple calculation shows that the up-left EORed $FF value to be

5. Thus, we can determine the "angle" values of the joystick in ad

dition to the up, down, left and right directions.

You don't have to figure out these values every time you sit down

to program, just use the following values as a quick look-up of the

EORed joystick values.

Joystick Values EORed with $FF

0 • Neutral

1 - Up

2 - Down

4 - Left

5 - Up Left

6 ■ Down Left

8 - Right

9 -Upright

10 - Down right

16 - Fire button pressed

The following program will let you see the joystick values on

your screen. Remembering that the neutral position is zero, we'll

have to add 48 to that value to print the ASCII character "0" to the

screen. (ASCII 48 = "0" character.) Thus, as you move your

joystick around you will see the actual EORed number in the

$DC01 register. By using LDA $D0C1 and then EORing the ac

cumulator value with $FF, we put the joystick value into the ac

cumulator. Then by using ADC #48 to add the decimal value 48 to

the accumulator and CHROUT, we print it to the screen.

GENERAL - JOYSTICK VALUES

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

207

r *****

*
*

{Commodore}

JOYSTICKVALUES *********4
=$DC01 =$C100 =$E544

=$C102
=

$
F
F
D
2

$
D
C
0
1

* * * *************
;ValuetoEOR

;EORed
value
o
f

208

END

{Commodore

JMP

RTS

.END}

START ;Go back and

read the

joystick.

KIDS' ASSEMBLER - JOYSTICK VALUES

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49168

49171

49172

49174

49177

49180

49182

49185

JSR

LDA#

STA

LDA#

STA

LDA

EOR

CLC

ADC#

JSR

CMP

BEQ

JMP

RTS

$E544

$FF

$C100

64

$C102

$DC01

$C100

48

$FFD2

$C102

49185

49165

We designed the program so that it would keep printing values to

the screen, and your screen fills up with numbers, scrolling different

values as you change the direction of the stick. To exit the program,

you press the fire button on your joystick.

Now that we can easily read the joystick, let's do something with

it. In the next chapter we'll see how to move graphics and sprites

with the joystick, but for now we'll just use it to change the

background colors. This time, though, we will not use ADC for an

offset to the ASCII code. Instead, we'll see what background colors

are created with the different joystick positions.

209

LABEL

GENERAL - JOYSTICK COLORS

OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore *=$C000}

. ******•••*****•**********•**••******•******•

j

. * *

; * JOYSTICK COLORS
. * *

1

. *************************************

j

{Commodore}

JSTICK

OFSET

CLEAR

FIRE

{Merlin}

JSTICK

OFSET

CLEAR

FIRE

START

= $DC01

= $C100

= $E544

= $C1002

EQU

EQU

EQU

EQU

JSR

LDA

STA

LDA

STA

LDA

EOR

CMP

$DC01

$C100

$E544

$C102

CLEAR

#$FF

OFSET

#16

FIRE

JSTICK

OFSET

FIRE

;Value to EOR

;EOR offset

;EORed value of

fire button

;Store here for

easy reference

;Read joystick

;EOR with $FF

;Fire button

pressed?

210

START

END

{Commodore

LDA

EOR

CMP

BEQ

STA

JMP

RTS

.END}

JSTICK

OFSET

FIRE

END

$D021

START

;Read joystick

OR with $FF

;Fire button

pressed?

;lf it is then quit

;Put joystick

value into

background

color register

KIDS' ASSEMBLER - JOYSTICK COLOR

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49168

49171

49174

49176

49179

49182

JSR

LDA#

STA

LDA#

STA

LDA

EOR

CMP

BEQ

STA

JMP

RTS

$E544

$FF

$C100

16

$C102

$DC01

$C100

$C102

49182

$D021

49165

Again, we used the fire button to exit the program. Unfortunate

ly, we're left with a black screen. You can change it by using ADC

#1 so that instead of the neutral position being black, it will be

white.

MAKING MESSAGES : ASC and .BYTE

At the beginning of this chapter we discussed creating prompts.

As you may have noticed, it took a lot of code to put a simple pro

mpt like COLOR? on the screen. With most assemblers, there is an

211

easy way to do it using a pseudo-opcode called ASC, .BYTE or

some similar pseudo-opcode. Since the Kids' Assembler does not

have such codes, we'll write some simple BASIC programs that will

allow you to do make prompts and other messages that can be ac

cessed with assembly language programs.

The ASC and .BYTE instructions operate something like DATA

statements in BASIC. The label in the line with the ASC or .BYTE

directives serves as the beginning address for the word in the

operand field. For example, the following shows the format for the

Merlin and Commodore assemblers respectively, with the starting

address being MSG:

LABEL OPCODE OPERAND

MSG ASC 'MERLIN'

MSG .BYTE 'COMMODORE'

The string in the operand takes up one byte for each character.

Therefore, if MSG were address 49170, the string 'MERLIN'

would take up 6 addresses (49170-49175) and the string 'COM

MODORE', 9 addresses, (49170-49178). Using the X register for an

index, simply LDA with MSG indexed by X and print each

character to the screen with JSR CHROUT.

First, we'll look at .BYTE

and ASC on the Commodore

and Merlin assemblers respec

tively. Both work in the same

way, but to avoid confusion,

each will be used with a similar

but separate example. Reading ASC& _BYTE

COMMODORE - .BYTE

LABEL OPCODE OPERAND COMMENT

*=$C000

212

.************

J

9

. *

9

. *

9

.************

>

CLEAR

CHROUT

READ

END

MSG

********** *********

.BYTE

= $E544

=$FFD2

JSR

LDX

LDA

JSR

CPX

BEQ

INX

JMP

RTS

.BYTE

.END

CLEAR

#$0

MSG,X

CHROUT

#8

END

READ

*

*

*

;Load one

character

;Print to screen

;See if it is the

length of

message (0-8)

;lf it is then end

;Increment X to

read next

character

'COMMODORE'

LABEL

•***•*■

*

*

*

MERLIN - ASC

OPCODE OPERAND COMMENT

ORG $C000

ASC

********•***********,

213

CLEAR

CHROUT

READ

END

MSG

EQU

EQU

JSR

LDX

LDA

JSR

CPX

BEQ

INX

JMP

RTS

ASC

$E544

$FFD2

CLEAR

#$0

MSG,X

CHROUT

#5

END

READ

•MERLIN'

Another way to read messages is with a "termination symbol."

At the end of your message before the closing single quote mark,

place a special symbol that is not likely to be part of the message.

The pound sign (#) is a good one to use. Then, instead of having to

count the characters, you can simply compare the value in the ac

cumulator with the ASCII value for the termination symbol. For

example, instead of having,

ASC 'MERLIN'

we would put,

ASC 'MERLIN#'

In that way when ASCII 35, the value for the pound sign (#) is load

ed into the accumulator, your program branches out of the

READ/PRINT routine. Take a look at the following example on

Merlin to see how it works.

MERLIN - ASC RELATIVE

LABEL OPCODE OPERAND COMMENT

ORG $C000

214

r**********i

*

*

*

CLEAR

CHROUT

READ

END

MSG

*

ASC RELATIVE

EQU

EQU

JSR

LDX

LDA

CMP

BEQ

JSR

INX

JMP

RTS

ASC

*

$E544

$FFD2

CLEAR

#$0

MSG,X ;Load one

character from

MSG

#35 ;ls it the pound

sign yet?

END ;If so then end.

CHROUT

READ

'MERLIN#'

Using this method^ you can easily create prompts and other
messages to be output to the screen. Whenever you need the

message, simply read it into the accumulator and throw it out to the

screen. Using several descriptive labels, different messages can be

accessed and printed depending on where your program branches.

MESSAGE MAKER FOR KIDS' ASSEMBLER

It's a pain in the neck to do a mile of LDA#'s and JSR $FFD2's

on the Kids' Assembler to get a message out. Since the Kids'

Assembler doesn't have ASC or .BYTE, the following BASIC pro

gram gives you a way to stick your message up in memory before

you start writing an assembly language program. Essentially, it

creates a table with the ASCII values of your message. Be sure to

put the message somewhere out of the way of both your assembly

language program and BASIC. If you're working up in the 49152

area, put the message table up around 49200 or 49300 for short

programs or in 828 for longer programs if you're not using a

215

cassette. Note where you put your message, and then when you

write an assembly language program, you simply read that area of

memory for your message. The BASIC program automatically

ends the message with ASCII 35, the value for a pound sign (#); so

don't put any other pound signs in your message or prompt. A se

cond BASIC program checks your message for you.

MESSAGE MAKER

10 PRINT CHR$(147)

20Y = 1

30 INPUT'START TABLE ";TS

40 INPUT'MESSAGE ";MS$

50 FOR X = TSTOTS + LEN(MS$)-1

60S$=MID$(MS$,Y,1)

70 P = ASC(S$)

80 POKE X,P : Y = Y +1 : NEXT

90 POKE X,35

MESSAGE CHECKER

10 INPUP'START ADDR ";SA

20 P= PEEK(SA): IF PEEK(SA) = 35 THEN END

30 PRINT CHR$(P);: SA = SA +1 : GOTO 20

To test this system, use 49200 as the start address for your

message. (Write your name or something original like that.) Once

you've checked to see the message is in place with your MESSAGE

CHECKER program, enter the following and then execute it:

KIDS' ASSEMBLER - MESSAGE READ/PRINT

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49164

JSR

LDX#

LDA-X

CMP#

BEQ

JSR

$E544

0

49200

35

49171

$E716

216

49167 INX

49168 JMP 49157

49171 RTS

Now that you see the principle involved in making and storing

ASCII messages to be retrieved from an assembly language pro

gram, we'll put together a BASIC program that will make it even

easier. Rather than having to write a new message or prompt from

our BASIC program every time we need one, why not write and

save little "message tables" we can use whenever we need them. In

that way, we can load the messages we're going to need into

memory, just as we would any assembly language program. By

keeping track of different start addresses for each message table and

making sure they do not overlap, we can have a whole dictionary of

useful messages and prompts. The following program will let you

enter a message, and then it will save it. Each message will end with

a "termination character", the pound sign (#), so that you can use

the CMP# compare-and-branch routine we examined. In that way,

you won't have to memorize the length ofthe message; only its star

ting address.

MESSAGE MAKER/SAVER

10 PRINT CHR$(147)

20Y=1

30 INPUT'START TABLE ";TS

40 INPUT'MESSAGE ";MS$

50 FOR X = TS TO TS + LEN(MS$) -1

60S$=MID$(MS$,Y,1)

70 P = ASC(S$)

80POKEX,P:Y = Y+1 : NEXT

90 POKE X,35

100SA = TS:MN$=MS$

110 MN$ = "0:" + MN$ + STR$(SA) + ",P,W

120 LB = SA -1NT(SA/256)*256

130HB=INT(SA/256)

140 OPEN2,8,2,MN$

150 PRINT#2,CHR$(LB) + CHR$(HB)

160P=PEEK(SA)

217

170 PRINT#2,CHR$(P)

180 IF P = 35 THEN 200

190SA = SA + 1 : GOTO 160

200 CLOSE2

210 END

SUMMARY

This chapter has shown you how to write assembly language pro

grams that interact with the user. Using either the keyboard or

joystick, the programs respond to the user's actions. Then, in turn,

by outputting information to the user in the form of prompts and

messages, the user knows what to do next. We spent most of our

time with ASCII messages since they most clearly demonstrate

what's going on in your program and computer. However, as we

saw with changing the background colors, there's more we can do

with the keyboard and joystick. In the next chapter, we will see how

to manipulate all kinds of graphics with interactive programs.

218

CHAPTER 13

HOT GRAPHICS

Introduction

This chapter will be a lot of fun. From BASIC, you probably

have found that a good deal of work with graphics involves POKEs

and PEEKs. In other words, most of the really interesting graphics

requires machine language programming from BASIC. As a result

of having dealt with machine code and graphics already, you will

find what we're doing in this chapter pretty familiar. However, in

stead of POKEing and PEEKing, we'll use our assembly language

instructions to do much the same thing and do it a lot faster. We'll

divide the chapter into two major sections:

1. Low resolution color and graphics

.2. Animation

In the first section, we'll examine color control and using and

changing characters. Since we've already used a lot of examples

with background, border and character colors, color control with

assembly language will be familiar to you. We will see how by using

various characters, we can create low resolution graphics.

219

The second section will cover animation. In BASIC you may

have discovered that movement is often slow and jerky, but in

assembly language you will actually have to slow down animated

objects so that you can see them! We'll have a separate discussion

of sprite animation in the next chapter.

As an extra machine language related matter, we'll also see how

to save a screen to disk as a PRG file. This will allow you to LOAD

a screen directly from the disk without having to RUN or SYS The

program.

LOW RESOLUTION GRAPHICS

Low resolution graphics are created using the characters on your

keyboard. The pattern of those characters can be thought of as

blocks appearing on your screen. Perhaps the best way to see one of

these blocks is to print an inverse space to your screen.

POKE 55296,1 : POKE 1024,224

That stores the color white in location 55296 and the inverse

character for a SPACE in screen location 1024.

By lining up the various blocks, changing their color to what you

want, you can create low resolution figures. To get started, let's

draw a couple of parallel lines in different colors:

GENERAL

LABEL OPCODE OPERANDCOMMENT

{Merlin ORG $CO0O}

{Commodore * =$C000}

220

. *

• *

J

. **.**** ***

1 >

{Commodore}

BAR1

BAR2

LIN1

LIN2

CLEAR

{Merlin}

BAR1

BAR2

LIN1

LIN2

CLEAR

START

LOW-

= 55416

= 55496

= 1144

= 1224

= $E544

EQU

EQU

EQU

EQU

EQU

JSR

LDX

LDY

LDA

STA

STA

TYA

STA

CLC

ADC

STA

INX

CPX

BNE

RTS

RES LINES

55416

55496

1144

1224

$E544

CLEAR

#$0

#2

#224

LIN1,X

LIN2,X

BAR1.X

#5

BAR2,X

#39

START

*

*

;1st line of

spaces

;2nd line of

spaces

;1st color of line

;Change color

with ADC

;2nd color of

line

221

KIDS'ASSEMBLER

ADRS OPCODE OPERAND

49152

49155

49157

49159

49161

49164

49167

49168

49171

49172

49174

49177

49178

49180

49182

JSR

LDX#

LDY#

LDA#

STA-X

STA-X

TYA

STA-X

CLC

ADC#

STA-X

INX

CPX#

BNE

RTS

$E544

$0

2

224

1144

1224

55416

5

55496

39

49159

Fat Lines!!

We used the X register to in

dex our beginning address to get

a straight horizontal line. We

started our first line in screen

memory 1144 and our second

one in 1224. For color, we

started the corresponding color

addresses at 55416 and 55496.

By incrementing our X register

from 0 to 39, we were able to

draw a line across the screen.

Also notice how we used the Y

register to get our first color. We never changed the value of Y, and

so whenever the program encountered the TYA instruction, it kept

putting a 2 (red color code) in the accumulator to be stored on the

color screen address. To get the second color (2 + 5=7, color

code for yellow), we used ADC. Of course, we could have simply

put LDA #7, but that wouldn't have been as weird.

222

To draw different kinds of horizontal lines, try substituting dif

ferent characters for the space. Instead of 224, try 192, 195

226,239,246,248 and 249 to see what happens.

Since horizontal lines are so simple, vertical lines ought to be a

snap. Unfortunately, it doesn't work quite that way. With horizon

tal lines, we could run one all the way across the screen using the X

register as an offset from the beginning address. However, with ver

tical lines, our address jumps from the top of the screen to the bot

tom are greater than 255. In fact, there is a difference of40 between

each address we will need. Look down the left side of your screen

memory map. It looks like this:

1024

1064

1104

1144

1184

1224

1264

1304

1344

etc.

As you can see, the X register would poop out before it got halfway

down the screen. Therefore, we have to use more beginning offset

addresses. We'll use five base addresses for both our characters and

color. In that way we can stay well within our register limit of 255.

GENERAL - VERTICAL LINES

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore * = $C000}

. • * * * i

9

. * *

; * VERTICAL LINES

223

{Commodore}

BAR1

BAR2

BAR3

BAR4

BAR5

LIN1

LIN2

LIN3

LIN4

LIN5

CLEAR

{Merlin}

BAR1

BAR2

BAR3

BAR4

BAR5

LIN1

LIN2

LIN3

LIN4

LIN5

CLEAR

START

= 55316

= 55556

= 55796

= 56036

= 56276

= 1044

= 1284

= 1324

= 1564

= 1804

= $E544

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDX

LDA

STA

STA

STA

STA

STA

LDA

STA

STA

STA

STA

55316

55556

55796

56036

56276

1044

1284

1324

1564

1804

$E544

CLEAR

#$0

#224

LIN1,X

LIN2,X

LIN3,X

LIN4.X

LIN5,X

#2

BAR1,X

BAR2,X

BAR3.X

BAR4.X

224

INXR

STA

LDY

INX

INY

CPY

BNE

CPX

BNE

RTS

BAR5,X

#o

#40

INXR

#24©

START

KIDS' ASSEMBLER - VERTICAL LINES

ADRS OPCODE OPERAND

49152

49155

49157

49159

49162

49165

49168

49171

49174

49176

49179

49182

49185

49188

49191

49193

49194

49195

49197

49199

49201

49203

JSR

LDX#

LDA#

STA-X

STA-X

STA-X

STA-X

STA-X

LDA#

STA-X

STA-X

STA-X

STA-X

STA-X

LDY#

INX

INY

CPY#

BNE

CPX#

BNE

RTS

$E544

$0

224

1044

1284

1324

1564

1804

2

55316

55556

55796

56036

56276

0

40

49193

240

49157

Another way to work with low resolution graphics is with your

CHROUT routine. Instead of having to deal with both color and

character screens, you can just deal with the characters. The screen

225

addresses make it handy to place blocks where you want them, but

with CHROUT, you can use the PLOT subroutine to place your
graphics. To see how this works, let's make a diagonal line.

In using the PLOT subroutine, you have to be sure to LDA your

character to be printed on the screen AFTER you PLOT. This is

because the accumulator can be scrambled by the PLOT subrou

tine. Also, be sure to CLC before you JSR to PLOT ($FFF0),

otherwise you may end up reading and not setting the plot location.

(To read the plot location, you set the carry flag with SEC.)

LABEL

GENERAL ■ DIAGONAL LINES

OPCODE OPERAND COMMENT

{Merlin

{Commodore

ORG $C000}

* = $C000}

r *********i

DIAGONAL PLOT

{Commodore}

CHROUT

CLEAR

PLOT

{Merlin}

CHROUT

CLEAR

PLOT

START

= $FFD2

= $E544

= $FFF0

EQU

EQU

EQU

JSR

LDX

LDY

LDA

JSR

CLC

$FFD2

$E544

$FFF0

CLEAR

#0

#0

#18

CHROUT

;Character for

inverse.

226

JSR

LDA

JSR

INX

INY

CPX

BNE

RTS

PLOT

#32

CHROUT

#25

START

;Character for

space.

;Next row

;Next column

;ls it at the

bottom row

yet?

;lf not go back

and do it again

KIDS' ASSEMBLER - DIAGONAL PLOT

ADRS OPCODE OPERAND

49152

49155

49157

49159

49161

49164

49165

49168

49170

49173

49174

49175

49177

49179

JSR

LDX#

LDY#

LDA#

JSR

CLC

JSR

LDA#

JSR

INX

INY

CPX#

BNE

RTS

$E544

0

0

18

$FFD2

$FFF0

32

$FFD2

25

49164

Admittedly, low resolution graphics aren't much for detailed

drawings, but they're a lot of fun. Change the background and

border colors by inserting values between 0 and 15 into $D021 and

$D020. (These are the routines we used in some of our previous ex

amples. The hexadecimal numbers are easier to remember than the

decimal ones once you get used to them.)

227

One way to have finer resolution in low resolution graphics is to

use characters that have the kinds of lines you want in your graphic

display. For example, if you want to have a nice thin diagonal line in

the DIAGONAL PLOT program above, just remove the lines that

inverse the screen (LDA #18 and JSR CHROUT), and use the value

109 instead of 32 to output to the screen. ASCII 109 is a left-leaning

angle. Put them together in a diagonal plot, and you will have a very

straight line instead of the "staircase" we got.

SAVING PLOTTED GRAPHICS

When you draw low-resolution figures with the PLOT

subroutine, you can save them as PRG files and load them directly

to your screen. Actually, it takes a lot less disk space to save your

graphics as machine language files and then load and SYS them,

but there are some applications where you might want to "overlay"

one set of graphics with another. Besides, it's interesting and useful

to know. (You can save anything on the screen, actually, and so this

method can be used to save text as well.)

Essentially, what you do is to scan the entire screen, and then use

the screen addresses (1024-2023) as your machine code file. Then

when you LOAD "GRAPHICFILE",8,1 your graphic will be on

the screen. Because your load address is the screen, it appears im

mediately without the necessity of having to SYS it.

The following BASIC program is to be used in conjunction with

a machine language program you have put in memory. For exam

ple, to save the DIAGONAL PLOT figure (not program) as a PRG

file, you first load your program into memory like you would nor

mally do. However, instead of SYSing the program at this time,

enter NEW and RETURN. Then LOAD and RUN the following

program. It will first SYS the program in memory so that the only

thing on your screen is the graphic figures. Then, it will treat the en

tire screen as a machine language program and put it on disk just as

any other machine language program would be. They take up about

four blocks of disk space compared to one block taken up by small

assembly language programs such as DIAGONAL PLOT. Here's a
summary of the steps to use:

228

Step 1. Either write a machine language graphic program in your

assembler or load one from disk.

Step 2. Enter NEW and RETURN.

Step 3. LOAD the SAVE PLOT program and RUN it.

SAVE PLOT

10 INPUT "NAME OF FILE TO SAVE"; NF$

20 NF$ = "0:" + NF$ + ",P,W"

30 INPUT "START ADDRESS";TER

40 SYSTER

50 BA = 1024 :EA = 2023

60 LB = BA-INT(BA/256)*256

70HB = INT(BA/256)

80 OPEN2,8,2,NF$

90 PRINT#2,CHR$(LB) + CHR$(HB)

100FORX=BATOEA

110P=PEEK(X)

120 PRINT#2,CHR$(P)

130 NEXT

140 CLOSE2

Take a look at Line 40. You probably know that there's no such

BASIC command as SYSTER (pronounced 'sister'), but there it is,

and everything works fine. It's just a way to do weird things with

your computer. Since the starting address ofyour machine program

in memory is INPUT in the variable TER, what it actually does is to

SYS the variable TER. Put them together, and there you have it. (If

you think that's dumb, use the variable name BOOMBAH and see

what happens.)

Before we go on to the next section, you're probably wondering

why we didn't use our program to save program files of graphics

created with storage to the screen addresses instead of just ones

created with the PLOT and CHROUT subroutines. Since most

Commodore 64's require that a corresponding color be included

when you STA an ASCII value in a screen address, we would have

229

had to have two files saved; one for the screen and one for the color.

You can do it if you want, but it didn't seem to be worth the bother.

ANIMATION

Animation in assembly language requires some programming

concentration, but it's so spectacular when you're finished, it's

worth it. All animation is based on the illusion of drawing a figure

in one place, erasing it, and drawing it in another place. It works

just like cartoons in the movies. A figure is drawn, shown for an in

stant on the screen, and then it is removed (erased) and another

figure is put in its place.

Your computer makes animation very simple since it can create

and erase figures in different places on the screen at high speeds. In

fact, with assembly/machine language, it is often too fast. To see

the difference in speed between a BASIC and assembly language

program doing the same thing, look at try the following programs.

BASIC ANIMATION

10 PRINT CHR$(147)

2© FOR X = 1 TO 10 : PRINT : NEXT

30 FOR X = 1 TO 39 : PRINT CHR$(113);: PRINT

CHR$(157); CHR$(32);

40 NEXT

50PRINTCHR$(113)

The ball really sails along in BASIC. A little flicker maybe, but it

moves nicely. Try it in assembly language now.

♦NOTE: We used different beginning addresses for Merlin

and the Commodore assemblers. The default ORG for Merlin

is $8000, and if we use it, we can test assembled programs in

the monitor before we save the program to disk. From the Edit

Mode, enter MON {RETURN} and you will be in the

monitor, indicated by a T prompt. To test the program, just

enter 8000g. All values in the Merlin monitor are assumed to

be hexadecimal. We have avoided the $8000 address for the

beginning of your object code because you might be using a

230

plug-in ROM. However, as we get into more complex and

longer programs, you'd better start using the Merlin monitor

for debugging your programs. If you have a ROM installed,

take it out before you start your assembly language program

ming with Merlin. If your program ORG is at $C000, it may

interfere with Merlin or the monitor.

LABEL

{Merlin

{Commodore

GENERAL

OPCODE OPERAND COMMENT

ORG

*=$C000

r*********4M

{Commodore}

CLEAR

CHROUT

PLOT

WHY

BALL

SPACE

ANIMATION 1

= $E544

= $FFD2

= $FFF0

= $C200

= $C202

= $C204

= $C206

r********************

{Merlin}

CLEAR

CHROUT

PLOT

EX

WHY

BALL

SPACE

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$E544

$FFD2

$FFF0

$8200

$8202

$8204

$8206

231

START

JSR

LDX

STX

LDY

STY

LDA

STA

LDA

STA

LDX

LDY

CLC

JSR

LDA

JSR

LDX

LDY

CLC

JSR

LDA

JSR

INC

LDY

CPY

BNE

CLEAR

#10

EX

#0

WHY

#113

BALL

#32

SPACE

EX

WHY

PLOT

BALL

CHROUT

EX

WHY

PLOT

SPACE

CHROUT

WHY

WHY

#38

START

;Set to row 10.

;Set to column
0\
V.

;ASCI I value for

ball

;ASCI I value for

space

;Plot the ball

;Load the ball

;Print the ball

;Load X register

with last row

plot

;Load Y register

with last

column plot

;Plot the space

;Load the space

;Erase the ball

with the space

;Increment the

column value

00
;Load the Y

register with

the next

column

;ls it near the

last column

;lf not print and

232

CLC

JSR

LDA

JSR

RTS

erase another

ball

PLOT

BALL

CHROUT ;Putaballon

the screen so

there's

something left

KIDS' ASSEMBLER - ANIMATION 1

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49167

49170

49172

49175

49178

49181

49182

49185

49188

49191

49194

49197

49198

49201

49204

49207

49210

49213

49215

JSR

LDX#

STX

LDY#

STY

LDA#

STA

LDA#

STA

LDX

LDY

CLC

JSR

LDA

JSR

LDX

LDY

CLC

JSR

LDA

JSR

INC

LDY

CPY#

BNE

$E544

10

$C200

0

$C202

113

$C204

32

$C206

$C200

$C202

$FFF0

$C204

$FFD2

$C200

$C202

$FFF0

$C206

$FFD2

$C202

$C202

38

49175

233

49217

49218

49221

49224

49227

CLC

JSR

LDA

JSR

RTS

$FFF0

$C204

$FFD2

You may have thought you did something wrong. If all you saw

was the ball on the right side of the screen after you SYSed the pro

gram, you keyed it in correctly. Animation is so fast in

assembly/machine language that you can't see the movement unless

you slow it down. To do that, we'll put in a PAUSE loop. In fact,

we'll have to put in a nested PAUSE loop since even a loop of 255

won't slow the movement down enough. All the pause loop does is

to run through an "empty loop" to slow down a program. In this

case, we ran through the loop 2550 times. Edit ANIMATION 1 so

that it includes the PAUSE loop in ANIMATION 2, and run the

program again. Now you can see the ball move smoothly across the

screen. To increase or decrease the speed of the ball, increase or

decrease the CPY #$0A.

GENERAL - ANIMATION 2

LABEL OPCODE OPERAND COMMENT

{Merlin

{Commodore

ORG $8000}

*=$C000}

ANIMATION 2

*

*

*

. ***********1

{Commodore}

CLEAR

CHROUT

PLOT

EX

WHY

= $E544

= $FFD2

= $FFF0

= $C200

= $C202

234

BALL

SPACE

{Merlin}

CLEAR

CHROUT

PLOT

EX

WHY

BALL

SPACE

START

PAUSE1

PAUSE2

= $C2©4

= $C2©6

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDX

STX

LDY

STY

LDA

STA

LDA

STA

LDX

LDY

CLC

JSR

LDA

JSR

LDY

LDX

INX

CPX

BNE

INY

CPY

BNE

LDX

LDY

CLC

JSR

$E544

$FFD2

$FFF©

$8200

$8202

$8204

$8206

CLEAR

#10

EX

#0

WHY

#113

BALL

#32

SPACE

EX

WHY

PLOT

BALL

CHROUT

#0 ;Begin pause

loop.

#0

#$FE

PAUSE2

#$0A

PAUSE1 ;End pause

loop.

EX

WHY

PLOT

235

LDA

JSR

INC

LDY

CPY

BNE

CLC

JSR

LDA

JSR

RTS

SPACE

CHROUT

WHY

WHY

#38

START

PLOT

BALL

CHROUT

KIDS' ASSEMBLER - ANIMATION 2

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49167

49170

49172

49175

49178

49181

49182

49185

49188

49191

49193

49195

49196

49198

49200

49201

49203

49205

JSR

LDX#

STX

LDY#

STY

LDA#

STA

LDA#

STA

LDX

LDY

CLC

JSR

LDA

JSR

LDY#

LDX#

INX

CPX#

BNE

INY

CPY#

BNE

LDX

$E544

10

$C200

0

$C202

113

$C204

32

$C206

$C200

$C202

$FFF0

$C204

$FFD2

0

0

$FE

49195

$0A

49193

SC200

236

49208

49211

49212

49215

49218

49221

49224

49227

49229

49231

49232

49235

49238

49241

LDY

CLC

JSR

LDA

JSR

INC

LDY

CPY#

BNE

CLC

JSR

LDA

JSR

RTS

$C202

$FFF0

$C206

$FFD2

$C202

$C202

38

49175

$FFF0

$C204

$FFD2

That was a lot of work to get that crummy ball moving across the

screen, and if you used the Kids' Assembler, you might be thinking

the French Foreign Legion would be involve less pain. You might

even be desperate enough to go back to BASIC. (God forbid!) On

the other hand, if you used an assembler with a decent editor, all

you had to do was to insert the eight lines for the PAUSE loop. If

you have a birthday coming up, it's near Christmas or you have a

half of ton of aluminum cans to take to the recycling center, think

about getting a good assembler.

EXTERNAL CONTROL OF MOVEMENT

Now that we have seen how to move objects, let's see how to con

trol them with an external device. We'll use the joystick for our ex

amples, but you could do the same thing with the keyboard. Just

substitute the SCNKEY and GETIN routines for the joystick ones

in the following programs.

The nice thing about using the PLOT subroutine in animation is

that you can use the X and Y registers to place things on the screen

in sequential locations. However, when you start moving all over

the screen, PLOT can really scramble things, especially your brain.

Therefore, we will begin using the ASCII code for your cursor con

trol.

237

CURSOR CONTROL CODES

Up
Down

Left

Right

145

17

157

29

$91

$11

$9D

$1D

We'll use the CHROUT subroutine for moving both the cursor

and the character. The trick is in remembering that CHROUT

moves everything to the RIGHT. Therefore, when we move down,

we actually move down and right with CHROUT. Therefore, we

will have to make adjustments when wemove in any other direction

than right. To get started, we'll make a blinking cursor and move it

around the screen. Again, note the different addresses used by

Merlin and Commodore assemblers for the starting location.

GENERAL - JOYSTICK CURSOR

LABEL OPCODE OPERAND COMMENT

{Merlin

{Commodore

ORG

*=$C000}

. ******************* 1

J

• *

• * JOYSTICK CURSOR
. *

r *****

*

*

*

{Commodore}

CLEAR

JSTICK

OFSET

FIRE

INVERSE

NORMAL

MARK

CHROUT

= $E544

= $DC01

= $0200

= $C202

= $C204

= $C206

= $0208

= $FFD2

► JOYSTICK

238

{Merlin}

CLEAR

JSTICK

INVERSE

NORMAL

MARK

CHROUT

START

DURSOR

EQU

EQU

BS8ET

Ems.

EQU

EQU

EQU

EQU

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

EOR

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

LDA

JSR

LDA

$E544

$DC©1

$8200

$8202

$8204

$8206

$8208

$FFD2

CLEAR

#$FF

OFSET

#16

FIRE

#32

MARK

#18

INVERSE

#146

NORMAL

JSTICK

OFSET

#1

UP

#2

DOWN

#4

LEFT

#8

RIGHT

FIRE

END

MARK

CHROUT

#157

OR value

;Fire button

;Space for the

cursor

;Inverse Code

;Normal code

;Joystick up?

joystick

down?

joystick left?

joystick right?

;Fire button

pressed?

;lf so then end.

;Load the

space

;Print the space

;Load the left

cursor

239

UP

DOWN

LEFT

RIGHT

PRINT

END

{Commodore

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

JMP

LDA

JMP

LDA

JMP

LDA

JMP

LDA

JSR

JMP

RTS

.END}

CHROUT

NORMAL

CHROUT

MARK

CHROUT

#157

CHROUT

INVERSE

CHROUT

START

#145

PRINT

#17

PRINT

#157

PRINT

#29

CHROUT

CURSOR

;Back up

;Set normal

;Back up

;Set inverse

;Go do it again

;Print up cursor

;Print down

cursor

;Print left cursor

KIDS' ASSEMBLER - JOYSTICK CURSOR

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49167

49170

49172

49175

49177

49180

49183

JSR

LDA#

STA

LDA#

STA

LDA#

STA

LDA#

STA

LDA#

STA

LDA

EOR

$E544

$FF

$C200

16

$C202

32

$C208

18

$C204

146

$C206

$DC01

SC200

240

49186

49188

49190

49192

49194

49196

49198

49200

49202

49205

49207

49210

49213

49215

49218

49221

49224

49227

49230

49232

49235

49238

49241

49244

49246

49249

49251

49254

49256

49259

49261

49264

49267

CMP#

BEQ

CMP#

BEQ

CMP#

BEQ

CMP#

BEQ

CMP

BEQ

LDA

JSR

LDA#

JSR

LDA

JSR

LDA

JSR

LDA#

JSR

LDA

JSR

JMP

LDA#

JMP

LDA#

JMP

LDA#

JMP

LDA#

JSR

JMP

RTS

1

49244

2

49249

4

49254

8

49259

$C202

49267

$C208

$FFD2

157

$FFD2

$C206

$FFD2

$C208

$FFD2

157

$FFD2

$C204

$FFD2

49180

145

49261

17

49261

157

49261

29

$FFD2

49207

When you assemble and run this program, you will see a flashing

cursor made by the SPACE character being turned normal and in

verse rapidly. When you move your joystick, the cursor will be

wholly out of control, jumping clear across the screen with a quick

movement of your joystick. Just as we saw with animation,

241

machine language is just too blasted fast. We'll have to slow it down

with a delay loop to get single space control over it.

Now that we have seen some general movement principles with

our cursor, let's draw with the joystick. This is not "animated"

movement in that what we draw is not erased and then re-drawn.

However, very similar principles apply when controlling what hap

pens with graphics on the screen. We'll also add a couple of new

tricks.

First, we saw in the last program that we had to keep drawing and

backing up. This required several LDA's and JSR's throughout the

program. Since we know we're going to have to back up, why not

make a subroutine that will do that. The subroutine will be accessed

just like the built-in subroutines using JSR. However, since we're

writing the subroutine as part of our own program, we have to in

clude an RTS to get back to our jump-off point. It works just like

GOSUB and RETURN in BASIC.

Second, we're going to put a pause loop in our "joystick scan" to

slow things down a bit. In the last program, when you moved the

joystick, the cursor hopped all the way across the screen. This was

because the scan was so quick that it was able to read the direction

ofthe joystick and jump to the subroutines several times before you

could put it in neutral. (In fact, you may want to increase the pause

loop we put in this program!)

The program draws low resolution lines on the screen. To keep it

simple and a little more flexible, we'll use the joystick LEFT to serve

as an eraser. Therefore, if you move the joystick UP, DOWN or

RIGHT, a line will be drawn. Move it left, and anything the cursor

hits will be erased.

GENERAL

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $8000}

{Commodore * = $C000}

242

***********1

JOYSTICK DRAW

ft*********************,

{Commodore}

CLEAR

JSTICK

OFSET

FIRE

INVERSE

NORMAL

MARK

CHROUT

{Merlin}

CLEAR

JSTICK

OFSET

FIRE

INVERSE

NORMAL

MARK

CHROUT

START

= $E544

= $DC01

= $C20

= $C202

= $C204

= $C206

= $C208

=$FFD2

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

EOR

CMP

BEQ

$E544

$DC01

$8200

$8202

$8204

$8206

$8208

$FFD2

CLEAR

#$FF

OFSET

#16

FIRE

#32

MARK

#18

INVERSE

#146

NORMAL

JSTICK

OFSET

#1

UP

243

PAUSE

UP

DOWN

LEFT

PRINT

BACK

END

{Commodore

LDA

JSR

LDX

INX

CPX

BNE

JMP

JSR

LDA

JMP

JSR

LDA

JMP

LDA

JSR

JMP

JSR

LDA

JSR

JMP

LDA

JSR

RTS

RTS

.END}

INVERSE

CHROUT

#0 ;Begin pause

loop

#254

PAUSE ;End pause loop

START

BACK

#145

PRINT

BACK

#17

PRINT

#157

CHROUT

PRINT

CHROUT

MARK

CHROUT

CURSOR

#157 ;Subroutine

CHROUT

KIDS' ASSEMBLER - JOYSTICK DRAW

ADRS OPCODE OPERAND

49152

49155

49157

49160

49162

49165

49167

49170

49172

JSR

LDA#

STA

LDA#

STA

LDA#

STA

LDA#

STA

$E544

$FF

$C200

16

$C0202

32

$C208

18

$C204

244

49175

49177

49180

49183

49186

49188

49190

49192

49194

49196

49198

49200

49202

49205

49207

49210

49213

49216

49219

49222

49225

49228

49231

49234

49237

49239

49240

49242

49244

49247

49250

49252

49255

49258

49260

49263

49265

49268

49271

49274

LDA#

STA

LDA

EOR

CMP#

BEQ

CMP#

BEQ

CMP#

BEQ

CMP#

BEQ

CMP

BEQ

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDX#

INX

CPX#

BNE

JMP

JSR

LDA#

JMP

JSR

LDA#

JMP

LDA#

JSR

JMP

JSR

LDA

146

$C206

$DC01

$C200

1

49247

2

49255

4

49263

8

49271

$C0202

49289

$C208

$FFD2

49285

$C206

$FFD2

$C208

$FFD2

49285

$C204

$FFD2

0

254

49239

49180

49285

145

49271

49285

17

49271

157

$FFD2

49271

$FFD2

$C208

245

49277

49280

49283

49285

49288

49289

JSR

JMP

LDA#

JSR

RTS

RTS

$FFD2

49207

157

$FFD2

That was a long one! Be sure to note the two RTS instructions at

the end of the program. The first one is to return to the program

position that initiated the JSR. It works like RETURN. The second

one is to return to BASIC and end the machine level program. Of

course the RTS that returns to BASIC does not have to be at the end

of the program, but it must be the last RTS encountered in the pro

gram flow.

SUMMARY

In this chapter we saw how to work with low resolution graphics

and animation. However, we learned a few new tricks in assembly

language programming, as well. We wrote our own subroutine that

we JSRed and RTSed from and saw how to make delay loops. By

combining previous skills, we even made a drawing program with

the joystick.

We did some work with color, but not a great deal. This was

because we already know how to change the colors to anything we

want from examples in previous chapters. Also, since we were do

ing a good deal of work with new concepts, more color may have

been confusing. Besides, I wanted you to test some of your own

skills in this area. Experiment with different border, background

and character colors with the programs. You'll be surprised by the

difference it makes.

In the next chapter, we will examine sprite graphics and sound.

There, we will combine new tricks with some of the those we learn

ed in this chapter. We will be learning the fundamentals of arcade

game assembly language programming.

246

CHAPTER 14

BLAZING SPRITES
AND MONSTROUS SOUNDS

SPRITE GRAPHICS

If you've worked with sprites in BASIC, you will find working

with them in assembly language is easier! Since most of the set-up

you had in BASIC involved POKEs and PEEKs, you were actually

working with machine language. We all know that assembly

language is simpler than machine language; so this ought to be a

snap for you BASIC sprite programmers. For those of you who

have not worked with sprites, we'll take it a step at a time.

In case you don't know what a sprite is on the Commodore 64, let

me explain. Basically, it is a 63 byte graphic image. Each byte is

given a value to turn on a configuration of pixels; little dots on the
screen. From our discussion of binary math and how the various

registers look, let's take a look at a single byte.

7 6 5 4 3 2 1

10 0 11111

On Off Off On On On On On

247

On your screen, the above configuration would look something like

the following if it were magnified:

Each sprite is composed of three columns and 21 rows. Each row

is made up ofthree bytes. Since each byte has 8 bits that can be turn

ed on or off, it is clearer to think of a sprite graphic as a 21 by 24

matrix of bits or pixels.

Column 1

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

Sprite Matrix

Column 2

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

Column 3

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

Row

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

In the above matrix, suppose that the 'x' marks represent a 0. If

we turned on a pixel, it would be a ' + \ To draw a character, we

just have to put little ' + * marks in the shape we want. To keep it

simple, we'll draw a cross:

248

Column 1

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

++++++++

++++++++

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxxf\f\w\f\<r\X\^\A\

xxxxxxxx

xxxxxxxx

xxxxxxxx

Column 2

++++++++

++++++++

++++++++

++++++++

++++++++

++++++++

Column 3

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

+ + + + ++.+ +

xxxxxxxx

xxxxxxxx

xxxxxxxx

XXXXXXXX

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx/\y\/\/\/\/\y\y\

xxxxxxxx

xxxxxxxx

xxxxxxxx

Row

1

2

3

4

5

6
7
■

8

g

10

11

12

131 W

14

15

16

17

181 w

19

20

21

Next, to envision our cross as a set of l's and zero's, let's change

the X's to 0 's and the + 's to l's.

Column 1 Column 2 Column 3

Row

00000000 11111111 00000000 1

00000000 11111111 00000000 2

00000000 11111111 00000000 3

00000000 11111111 00000000 4

00000000 11111111 00000000 5

11111111 11111111 11111111 6

11111111 11111111 11111111 7

11111111 11111111 11111111 8

11111111 11111111 11111111 9

11111111 11111111 11111111 10

249

00000000

00000000

00000000

00000000

00000000

00000000

oooooooo

00000000

00000000

oooooooo

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

11

12

13

14

15

16

17

18

19

20

21

To get our cross into the computer, we will have to change the

binary values into decimal or hex so that we can put them into

memory. (We could do it with binary numbers, but that would be

impossible with the Kids' Assembler.) We know a byte with

00000000 is equal to 0 and a byte with 11111111 is 255 or $FF. To

arrange our cross in the correct sequential order, we move from left

to right and top to bottom. In the column to the right of our figure,

we'll place the decimal values.

Column 1

oooooooo

00000000

00000000

oooooooo

00000000

11111111

11111111

11111111

11111111

11111111

oooooooo

00000000

oooooooo

00000000

oooooooo

oooooooo

oooooooo

oooooooo

Column 2

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

Column 3

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

11111111

11111111

11111111

11111111

11111111

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

00000000

Value

0,255,0

0,255,0

0,255,0

0,255,0

0,255,0

255,255,255

255,255,255

255,255,255

255,255,255

255,255,255

0,255,0

0,255,0

0,255,0

0,255,0

0,255,0

0,255,0

0,255,0

0,255,0

250

00000000 11111111 00000000 0,255,0

00000000 11111111 00000000 0,255,0

00000000 11111111 00000000 0,255,0

To place a sprite into memory, you begin with Row 1 Column 1

and move to Row 1 Column 2, Row 1 Column 3, Row 2 Column 1,

Row 2 Column 2 etc. and place the values in sequential memory

locations. (You snake along in other words.) Thus, in the first two

rows, we would place the values into memory in the following

order:

Location Value Column Row

#1

#2

#3

#4

#5

#6

0

255

0

0

255

0

1

2

3

1

2

3

1

1

1

2

2

2

Of course, you're not limited to values of0 or 255. Depending on

the bit configuration, your sprite bytes can be any combination of

values between 0 and 255. For example, you might have a con

figuration that looks like the following:

00001111 00111100 1111000 15,60,240

00000111 00011000 1110000 7,24,224

00000011 01100110 1100000 3,102,192

Use the BINARY - DECIMAL conversion program in Chapter 5 to

easily make the conversion from binary to decimal.

Further on in this chapter we will write a "Sprite Assembler" in

BASIC that will store your sprites and save them. Before that,

though, we must first go over the procedure for getting sprites to

work.

SPRITE CREATION

The only way to work with sprites and assembly language is to

GET ORGANIZED! Programming sprites is actually quite simple

251

once you have everything set up in a simple sequence and know

what registers to use. To begin, let's outline the basic sequence of

programming sprites

SIMPLE SPRITE SEQUENCE

1 Store block number into POINTER.

2. ENABLE Sprite

3. Store sprite COLOR in sprite color register

4. BUILD sprite and store it.

5. Set horizontal HIGH bit to 1 or 0.

6. MOVE sprite

The above sequence provides the order of events in your pro

gram. Assembly language uses the same sequence as BASIC; so

there's nothing new about it. Now, let's look at each step closely.

1. Store Block Number into POINTER.

We will be storing our sprites in available memory blocks of 63

bytes each. Therefore, we must find some 63 byte blocks we can

use.

Block Number Addresses:

11 704-767 $2C0-$2FF

13 832-895 $340-$37F

14 869-959 $380-$3BF

15 960-1023 $3C0-$3FF

The block number refers to the number of 64 byte blocks (not 63

since 64 is evenly divided into 256) below the starting address. For

example, Block 0 is at addresses 0-63, Block 1 at 64-127 and so

forth. Without rearranging memory, those four blocks are about as

much as we can handle. Therefore, we can build four sprites. (With

memory management, you can get up to eight sprites going.)

Now that we know what a block number is, we must store that

value in a register that points to the block in which we will store our

252

sprite. The pointer address begins at 2040 ($7F8). To get the correct

pointer for our sprite, we add the sprite number to the base address.

Sprite number

Sprite ©

Sprite 1

Sprite 2

Sprite 3

Sprite 4

Sprite 5

Sprite 6

Sprite 7

POINTER

2040

2041

2042

2043

2044

2045

2046

2047

Register

$FF8

$FF9

$FFA

$FFB

$FFC

$FFD

$FFE

$FFF

For example, let's say we

wanted to use block 13 (loca

tions 832-895) and Sprite 1. We

would do the following:

LDA

STA

#13

2041

That would do it. If you've

worked with sprites in BASIC,

it's just like POKE 2041,13.

2. ENABLE Sprite

The register at $D015 (53269)

is the ENABLE register for

sprites. To enable a specific

sprite, you load $D015 with the

sprite value, not the sprite

number.

Sprite Number Sprite Value

Sprite© 1

Spritel 2

Sprite2 4

Sprite Pointer

253

Sprite3 8

Sprite4 16

Sprites 32

Sprite6 64

Sprite7 128

To enable Sprite 2, you would do the following:

LDA #4

STA $D015

REMEMBER, the value 4 is for Sprite 2, not Sprite 4.

3. Store Sprite COLOR in Sprite Color Register.

Each sprite has a color value from 0-15 ($0-$F). The color values

correspond to the standard colors we've used so far for

background, border and character colors. Each sprite has its own

color register beginning at $D027 (53287.) To determine which col

or register to use, just add the sprite number to the base address of

$D0 27 (53287).

Sprite Number Color Register

Sprite 0

Sprite 1

Sprite 2

Sprite 3

Sprite 4

Sprite 5

Sprite 6

Sprite 7

$D027/53287

$D028/53288

$D029/53289

$D02A/5329(D

$D02B/53291

$D02C/53292

$D02D/53293

$D02E/53294

For example, to store the color RED in Sprite 1 color register, simp

ly use the following:

LDA #2 ;Value for color RED

STA $D028

254

The process works just like storing the background color in $D021

except it turns the sprite color on instead of the background color.

4. BUILD Sprite

At this stage, you load the sprite values (63 of them) into the

block you stored in the pointer register in Step 1, For example, if

you used Block 13, you would store the sprite values in locations

832-895 ($340-$37F). We will discuss the several ways sprites can be

built and stored further on in this chapter.

5. Set horizontal HIGH bit to 0 or 1.

The register at $D010 holds the high byte for all sprite horizontal

locations. If it is set to 1 then all horizontal (X) values are 256 or

higher. If it is set to 0, all values are from 0-255. The horizontal

screen for sprites is 320 dots wide. For the first 255 dots, the high

byte is set to 0, and for 256 to 320, it must be set to 1. For the time

being, we'll be setting it to 0.

LDA #0

STA $D010

Later we will discuss full horizontal movement.

6. MOVE Sprite

To move your sprite, the X (horizontal) and Y (vertical) positions

are set in register pairs beginning at $D000-$D0001 (53248-53249).

The first of the pair is the X position and the second is the Y posi

tion.

Register Pair

Sprite Number X Y

Sprite 0 $D000/53248 $D001/53249

Sprite 1 $D002/53250 $D003/53251

Sprite 2 $D004/53252 $D005/53253

Sprite 3 $D006/53254 $D007/53255

Sprite 4 $D008/53256 $D009/53257

255

Sprite 5 $D00A/53258 $D00B/53259

Sprite 6 $D00C/53260 $D00D/53261

Sprite 7 $D00E/53262 $D00F/53263

To move a sprite, the X and Y values of the corresponding

registers are changed. The good thing about sprites is that you do

not have to erase a sprite to move it. You simply change the X andY

values ofthe corresponding registers. For example, to move Sprite 1

across the screen horizontally at vertical location 100, you would

use the following:

LDX #0

LDY #100

STY $D003

MOVE STX $D002

INX

CPX #255

BNE MOVE

Of course, you can also change the value of the Y register to move

vertically, or change both the X and Y values to move diagonally.

At this point we have all of the basic information for making a

sprite. For our first example, we will simply make a big block by fill

ing in our sprite area with 255 ($FF). We will then move our block

across the screen. Since machine language is so fast, we will have to

slow our sprite down with a pause loop. We will use Sprite 0 for our

first example since it uses the base addresses of all the registers.

Also, we will use hexadecimal values for the registers since they are

easier to remember. Most of them start with $D0, and you can

think of them as "do" something or other.

GENERAL - SPRITE ZERO STARTER

LABEL OPCODE OPERAND COMMENT

{Merlin ORG

{Commodore * = $C000}

256

. *

.************

{Commodore}

SPRITE©

ENABLE

COLOR©

SPCX

SPOY

MSBX

SHOUSE

{Merlin}

SPRITE©

ENABLE

COLOR©

SP0X

SPOY

MSBX

SHOUSE

CLEANUP

*

SPRITEZERO STARTER

= $7F8

= $D015

= $D©27

= $D©©©

= $D©©1

= $D01©

= $034©

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

STA

$7F8

$D015

$D©27

$D©0©

$D©01

$D01©

$©34©

$E544

#$©D

SPRITE©

#1

ENABLE

#2

COLOR©

#0

#0

*

r*************

;Block 13 or

$0D

;Store it in

pointer for

Sprite 0

;Sprite 0 enable

value

;Store it in

enable register

;Color red

;Color register

for Sprite ©

SHOUSEX

257

BUILD

MOVE

PAUSE

INX

CPX

BNE

LDX

LDA

STA

INX

CPX

BNE

LDA

STA

LDX

LDA

STX

STA

LDY

INY

CPY

BNE

INX

CPX

BNE

RTS

#63

CLEANUP

#0

#$FF

SHOUSE.X

#63

BUILD

#0

MSBX

#0

#7©

SP0X

SP0Y

#0

#255

PAUSE

#254

MOVE

;Store zeros in

sprite area

;Fill up sprite

area with $FF

or 255

;to make solid

block

;Store 0 in

MSBX to locate

sprite in

horizontal

locations 0 to

255 only

;Vertical

location

;Increment

horizontal

location by X

;Y register stays

at constant

location of A

register

; Delay loop.

258

KIDS' ASSEMBLER - SPRITE-0 STARTER

ADRS OPCODE OPERAND

49152

49155

49157

4916©

49162

49165

49167

49170

49172

49174

49177

49178

49180

49182

49184

49186

49189

49190

49192

49194

49196

49199

49201

49203

49206

49209

49211

49212

49214

49216

49217

49219

49221

JSR

LDA#

STA

LDA#

STA

LDA#

STA

LDX#

LDA#

STA-X

INX

CPX#

BNE

LDX#

LDA#

STA-X

INX

CPX#

BNE

LDA#

STA

LDX#

LDA#

STX

STA

LDY#

INY

CPY#

BNE

INX

CPX#

BNE

RTS

$E544

$0D

$7F8

1

$D015

2

$D027

0

0

$0340

63

49174

0

$FF

$0340

63

49186

0

$D010

0

70

$D000

$D001

0

255

49211

254

49203

If you're using the Kids' Assembler, you're at a disadvantage

since you cannot define the descriptive variable names. However,

259

with the Merlin and the Commodore assemblers, it's a good idea to

create a source code with all of the sprite registers defined and then

save it to disk. In this way, when you're ready to work with sprites,

all of your variables are defined and you can start with the creation

and movement of your sprites with little effort.

SPRITE BUILDING

The most exacting process in

sprite programming is building

the sprites. We'll design and

build a sprite (something more

interesting than a cross or block)

and examine the different ways

your assembler can store the

sprite in memory. We will use

Block 13 (832-895) in all of our

examples. Instead of using the

Kids' Assembler, we'll write a

Sprite Assembler that will be a

lot easier for creating and stor

ing sprites. Our sprite will be

called PLANET DESTROYER!

Making sprites takes

Patience...

PLANET DESTROYER

Column 1

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

+XXXXXXX

+ + +XXXXX

++++++XX

++++++++

XXX+ + + + +

XX++++++

Column 2

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

+XXXXXXX

+ + + +XXXX

++++++++

Column 3

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

XXX+ + +XX

+ + + +xxxx

++++++++

Row

1

2

3

4

5

6

7

8

9

10

11

12

260

XX++++++

XXX+ + + + +

+ + + + + + XX

+ + +xxxxx

+XXXXXXX

xxxxxxxx

xxxxxxxx

Column 1

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

100000000

1110000

11111100

11111111

11111111

00011111

00111111

00111111

00011111

11111111

11111111

11111100

11100000

100000000

oooooooo

oooooooo

+XXXXXXX

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

++++++++

+ + + +xxxx

xxxxxxxxw\f\#\f\f\f\w\A\

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

PLANET DESTROYER

Column 2

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

10000000

11110000

11111111

11111111

11111111

11111111

11110000

10000000

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

Column 3

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

ooooooo

oooooooo

oooooooo

oooooooo

00011100

11110000

00111111

00111111

11110000

oooooooo

oooooooo

oooooooo

oooooooo

ooooooo

oooooooo

oooooooo

13

14

15

16

17

18

19

20

21

Row

1 0,0,0

2 0,0,0

3 0,0,0

4 0,0,0

5 0,0,0

6 128,0,0

7 224,0,0

8 252,0,0

9255,128,0

10 255,240,28

11 31,255,240

12 63,255,63

13 63,255,63

14 31,255,240

15 255,240,0

16 255,128,0

17 252,0,0

18 224,0,0

19 128,0,0

20 0,0,0

21 0,0,0

At this point we have all the values for our PLANET

DESTROYER sprite. The most obvious (and tedious) way of get

ting those values into memory would be to do something like the

following:

261

LDA #0

STA 832

LDA #0

STA 833

etc...

With the Commodore and Merlin assemblers, a better way

would be to define them with special pseudo-opcodes (directives).

Remember when we used ASC to define strings? Well, you can also

define numbers, except that you use DFB on Merlin and .BYTE on

the Commodore EDITOR64. These directives work something like

DATA statements. Each value is separated by a comma. For exam

ple, the following routine would read in the values in the line labeled

DATA (any name will do).

BUILD

LDX

LDA

STA

INX

CPX

BNE

#©

DATA.X

832,X

#64

BUILD

{Commodore}

DATA .BYTE 0,0,0,0,0,0,0

.BYTE 128,0,etc...

{Merlin}

DATA DFB 0,0,0,0,0,0,0

DFB 128,9,etc...

Now let's type in our PLANETDESTROYERprogram and give

it a test run.

GENERAL - PLANET DESTROYER

LABEL OPCODE OPERANDCOMMENT

{Merlin ORG

{Commodore *=$C000}

262

r*********************************

• *

>

. *

. *

j

{Commodore}

SPRITE©

ENABLE

COLOR©

SP0X

SPOY

MSBX

SHOUSE

{Merlin}

SPRITE©

ENABLE

COLOR©

SP0X

SPCY

MSBX

SHOUSE

CLEANUP

PLANET DESTROYER

= $7F8

= $D©15

= $D©27

= $D©0©

= $D©01

= $D01©

= $©34©

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

STA

INX

CPX

************** *********

$7F8

$D©15

$D027

$D©0©

$DD©1

$D©1©

$©34©

$E544

#© ;Color for black

$D©2© ; Border black

$D©21 background

black

#$©D

SPRITE©

#1

ENABLE

#7 ;Yellow

COLOR©

#©

#$0©

SHOUSE.X

#64

263

BUILD

MOVE

PAUSE

;Use .BYTE

DATA

BNE

LDX

LDA

STA

INX

CPX

BNE

LDA

STA

LDX

LDA

STX

STA

LDY

INY

CPY

BNE

INX

CPX

BNE

JMP

RTS

instead of DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

CLEANUP

#0

DATA,X ;Read DFB /

.BYTE values

one at a time

SHOUSE,X

;Store in

SpriteHOUSE

#63

BUILD

#0

MSBX

#0

#70

SPOX

SPOY

#0

#255

PAUSE

#254

MOVE

MOVE

with Commodore

0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,128,0,0

224,0,0,252,0,0

255,128,0

255,240,28

31,255,240

63,255,63

63,255,63

31,255,240

255,240,0

255,128,0

252,0,0

264

DFB 224,0,0

DFB 128,0,0

DFB 0,0,0,0,0,0

Notice that when using DFB and .BYTE directives, the label,

DATA, is able to reference all of the values entered. This includes

values in lines after the label.

KIDS' SPRITE ASSEMBLER

As you can imagine, building sprites with the Kids's Assembler

would be a royal pain in the neck since it has no labels or DFB /

.BYTE directives. Therefore, let's make a special assembler that

will make it easy to enter sprite data and save the sprite to disk.

Then, once you have your sprite made, you can load it up into

memory without having to build it each time you want to use it. In

this way you can create a whole library of sprites, and then just

write the programs to enable and move the sprites.

Since the Sprite Assembler is designed especially for sprites and

not general assembly work, there are some special features about it.

First, it takes data in groups of three. Each INPUT prompt expects

three values separated by a comma. For example, you will be pro

mpted,

ROW 5?

and you should enter something like,

ROW 5 ? 255,128,0 {RETURN}

By using the method we have developed for calculating sprite values

in the sprite matrix, it will be very simple to read sprites into

memory.

When the program starts, you will be expected to give one of four

blocks. The block number, not the beginning address is to be

entered. When the program is saved to disk, the block number is ap

pended to the file name so that later when you want to use that

265

sprite in a program, you will know the block number it uses. When

you want the sprite in memory to be used by a program, you will

load the sprite as follows:

LOAD "FILENAME 13",8,1

Then when the program ac

cesses the data in Block 13, or

whatever block it was saved in, it

will find your sprite.

Sprite Assembler

Sprite Assembler

10 PRINT CHR$(147):R = 1

20 PRINT "STARTING ADDRESS AS BLOCK:"

30 PRINT "BLOCK 11: 704-767"

40 PRINT "BLOCK 13: 832-895"

50 PRINT "BLOCK 14:896-959"

60 PRINT "BLOCK 15:960-1023"

70 FOR X = 1 TO 39

80 PRINT CHR$(18);CHR$(32);: NEXT: PRINT

90 INPUT "BLOCK NUMBER";BL

100 IF BL <> 11 ANDBL <> 13 ANDBL <> 14

ANDBL <> 15 THEN 90

110 SA = BL*64

120 FOR X = SA TO SA + 62 STEP 3

130 PRINT "ROW";R

140 INPUT A,B,C

150 IF A > 255 OR B > 255 OR C > 255 THEN 130

160 POKE X,A: POKE X + 1,B : POKE X + 2,C

170 R = R + 1 : NEXT

200 REM *************

210 REM WRITE TO DISK

220 REM *************

230 LB = SA- INT(SA/25^ * 256

266

240 HB = INT(SA/256)

250 INPUT "ENTER SPRITE NAME";SN$

26© SN$ = "0:" + SN$ + STR$(BL) + ",P,W"

270 OPEN2,8,2,SN$

280 PRINT#2,CHR$(LB) + CHR$(HB)

290 FOR V = SA TO SA + 62 : SC = PEEK(V)

300 PRINT#2,CHR$(SC)

310NEJTTV

320 CLOSE2

We should do the same thing for the other assemblers. After all,

if we can save sprites as separate files, then we won't have to pro

gram around them. We can just load them into memory and then

access them from any sprite program we write. The main thing to

remember is that we have to use the available blocks of memory to

store our sprites. Therefore the ORG must begin in one of those

blocks. The following shows how to do this with Block 13. The

same technique is used with the other blocks. Just change the ORG

or * = address.

GENERAL - SPRITE CREATOR 13

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $0340}

{Commodore * = $0340}

*

•ATOR13
*

J

. *

1

. *

J

. *

J

J

{Commodore}

SPRITE©

ENABLE

COLOR©

SP0X

SP0Y

MSBX

SHOUSE

SPRITE C

= $7F8

= $D015

= $D027

= $D0

= $D001

= $D010

= $0340

267

{Merlin}

SPRITE©

ENABLE

COLOR©

SP0X

SP0Y

MSBX

SHOUSE

.************

. *

. *

. *

J

.************

J

BUILD

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$7F8

$D015

$D027

$D000

$D01

$D010

$0340

*

Build Sprite *
*

LDX

LDA

STA

INX

CPX

BNE

#0

DATA.X ;Read DFB /

.BYTE values

one at a time

SHOUSE.X

;Store in

SpriteHOUSE.

#63

BUILD

r*****************i

. *

1

. *

J

. *

9

. ************

1

{Merlin}

DATA

{Commodore}

DATA

Sprite Data

DFB #,#,#

.BYTE #,#,#

*

*

*

r**************

;Values for

sprite

268

All you have to do is to enter your sprite data after the DFB or

.BYTE directives. When you're finished, save the object code to

disk, and then using either the LOADER64 programs on the Com

modore or the LOAD "SPRITENAME.O",8,1 sequence for the

Merlin object file.

= = THE WORM HAS TURNED = =

The Sprite Assembler is so convenient, you may actually

want to use it instead ofyour regular assembler, especially

if you're using the Commodore assembler. This is

because you can use the LOAD "FILENAME",8,1 se

quence to load sprites created with the Sprite Assembler.

You can't do that with the Commodore system unless

you create and save code with the monitor. So here's a

case where the worm has turned and it's actually easier to

use something from the Kids' system.

Now that we have programs that will create sprites and save them

for use, we will need to see how to access these sprites from within a

program. We'll just modify our starter program to be a Sprite

Tester. We can load a sprite from disk, and then run the following

program to see if the sprite is what we thought it was. Notice that we

have taken out the CLEANUP subroutine. This is because that

would wipe out any sprite in memory we wanted to test. This tester

is designed for sprites using Block 13, but it can be changed to test

sprites in any block. Use the following sequence:

1. Create your sprite and save it to disk.

2. Load your sprite into memory as you would any other

machine language program.

3. Load the SPRITE TESTER program into memory and SYS

it.

Your sprite should run across the screen for you.

269

GENERAL - SPRITE TESTER

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $8000}

{Commodore * = $C000}

r ******i

9

. *

9

. *

9

. *

SPRITE TESTER

9

.*********************i

9

{Comm0odore}

SPRITE©

ENABLE

COLOR©

SP0X

SP©Y

MSBX

SHOUSE

{Merlin}

SPRITE©

ENABLE

COLOR©

SPOX

SP0Y

MSBX

SHOUSE

= $7F8

= $D015

= $D©27

= $D0©©

= $D001

= $D©1©

= $©34©

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDX

$7F8

$D©15

$D©27

$D©©0

$D©©1

$D©1©

$©34©

$E544

#©

$D©20

$D©21

#$©D

SPRITE©

#1

ENABLE

#7

COLOR©

#©

r * * *

*

*

*

r * * *

270

MOVE

PAUSE

LDA

STA

LDA

STX

STA

LDY

INY

CPY

BNE

INX

CPX

BNE

RTS

#$00

MSBX

#70

SP0X

SP0Y

#0

#255

PAUSE

#254

MOVE

KIDS' ASSEMBLER - SPRITE TESTER

ADRS OPCODE OPERAND

49152

49155

49157

49160

49163

JSR

LDA#

STA

STA

LDA#

49165 STA$7F8

49168

49170

49173

49175

49178

49180

49182

49185

49187

49190

49193

49195

49196

49198

49200

49201

LDA#

STA

LDA#

STA

LDX#

LDA#

STA

LDA#

STX

STA

LDY#

INY

CPY#

BNE

INX

CPX#

$E544

0

$D021

$D020

$0D

1

$D015

7

$D027

0

0

$D010

70

$D000

$D001

0

255

49195

254

Testing Sprite

271

49203

49205

BNE

RTS

49187

FULL HORIZONTAL MOVEMENT

So far, we have only moved part of the full horizontal move. In

order to move our full horizontal width, we have to store a 1 in the

MSBX register. That's easy enough. Just insert the following lines

to the SPRITE TESTER program before the RTS and your sprite

will move across the entire screen:

MOVE2

PAUSE2

LDX

LDA

STA

LDA

STX

STA

LDY

INY

CPY

BNE

INX

CPX

BNE

#0

#1

MSBX

#70

SP0X

SP0Y

#0

#255

PAUSE2

#90

MOVE2

;Set the high

byte of X

position

;Keep Y at 70

;X position is

now 255 + X

When you test a sprite on the program now, it will go all the way

across the screen.

SPRITE EXPANSION

A final aspect of sprite programming we will discuss is the expan

sion of sprites to double size. The registers at $D01D (53277) and

$D017 (53271) control the X and Y sizes ofthe sprite. The sprites we

have been using so far have been single width and height. By storing

the Sprite Value in the respective registers, it is possible to expand

the sprite to double width. The following sprite values are used:

272

Sprite Value

Sprite 0

Sprite 1

Sprite 2

Sprite 3

Sprite 4

Sprite 5

Sprite 6

Sprite 7

1

2

4

8

16

32

64

128

It is fairly important to have a variable name for your X and Y

expansion registers. This is so that you can add and subtract the

sprite value to those registers to change the sprite size. If you're

using multiple sprites, this becomes crucial. For example, if you

store 1 in $D017 and $D01D, Sprite 0 will be expanded. Ifyou then

STA 2 in the same registers so that Sprite 1 will be expanded, Sprite

0 will be reset to normal size. The following shows how to change

sprite size using multiple sprites.

YXPAND EQU

XXPAND EQU

LDA

STA

STA

LDA

CLC

ADC

STA

STA

$D017

$D01D

#1

YXPAND

XXPAND

YXPAND

#2

YXPAND

XXPAND

;Sprite 0 value stored

in expansion

registers

;Add Sprite 1 value to

registers

Now if you want to return one or the other sprites to normal size,

you simply subtract from the expansion registers. For example, to

keep Sprite 1 at double size and return Sprite 0 to normal, you

would just SBC 1 from each register.

273

LDA XXPAND

SEC

SBC #1

STA YXPAND

STA XXPAND

There is still more to sprites than we have covered, but we have

dealt with the major aspects of assembly language programming

and sprites. The trick is to get organized with sprites. Then, it is

simply a matter of following a series of steps. By using the keyboard

and joystick subroutines we've developed, it is possible to control

movement from these external devices. Since you should already

know how to do that, I'll let you insert these subroutines yourself.

ASSEMBLY SOUNDS

Like sprite programming in BASIC, most sound programming is

also done with POKEs and PEEKs. Therefore, it should not be at

all difficult to do make all the sounds we want. The trick, as with

sprites, is to organize everything into variables pertaining to the pro

per registers.

We're going to look at the basic features of sound on your Com

modore 64. By making changes to the program we're going to

write, you will be able to produce a whole lot of sound. By changing

the variables, you will be able to make music, racket or the sound of

a train rushing through your TV. Here, the trick is to see how to get

your sounds working in assembly language. Other sources are

available for getting all of the several aspects of your SID chip

working. Just in case you have not worked with sound before, turn

up the sound on your TV so you can hear what's going on. (If you

have a monitor with no sound, you might as well skip this section.)

On the most fundamental level, you computer deals with six

registers to create sound. The duration of a sound is done with a

delay loop that keeps everything going until the program nulls the

sound registers by filling them with zeros.

274

1. Volume Control. The volume control register is at $D418

(54296). It can have a maximum value of $F (15). It controls how

loud the sound will be.

2. Attack - Decay. This refers to how fast a sound reaches its

maximum volume and falls from that volume. Its register is at

$D405 (54277). The maximum value is 240.

3. Sustain - Release. The extent to which a sound is carried at a

certain level before it is released is its sustain/release variable. The

$D406 (54278) register holds it. Like attack/decay, its maximum

value can be 240.

4. High and Low Frequency. The pitch of notes is determined by

their high/low frequency. The low frequency register is at

$D400and the height at $D401.

5. Waveform. Sounds can either be smooth or rough. The

waveform determines how this will occur. There are four major

waveforms we can use:

a. Triangle = 17

b. Sawtooth = 33

c. Pulse = 65

d. Noise =129

To make a sound, we first store values in the registers. Then we

simply "hold" a sound with a delay loop. Even a loop of 255 will

give you a very short sound; so you may need nested loops, depen

ding on what sound you want. At the end ofthe delay loop, you will

null the registers by storing zeros in them.

GENERAL - ASSEMBLY SOUND

LABEL OPCODE OPERAND COMMENT

{Merlin ORG

{Commodore * = $C000}

275

. *************** 1 r *****i

. *

. *

J

. *

J

. ************

J

{Commodore}

SIGVOL

ATDCY1

SUREL1

VCREG1

FRELO1

FREHI1

{Merlin}

SIGVOL

ATDCY1

SUREL1

VCREG1

FRELO1

FREHI1

SET

PLAY

ASSEMBLYSOUNDS

= $D418

= $D405

= $D406

= $D404

= $D400

= $D401

EQU

EQU

EQU

EQU

EQU

EQU

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDY

LDX

I NX

t*********4

$D418

$D405

$D406

$D404

$D400

$D401

#15

SIGVOL

#128

ATDCY1

SUREL1

#195

FRELO1

#16

FREHI1

#17

VCREG1

#0

#0

*

*

*

;Set volume to

15

;Set attack

-decay to 128

;Set sustain

- release to 128

;Store 195 in the

low frequency

;Store 16 in the

high frequency

276

CPX

BNE

INY

CPY

BNE

LDA

STA

STA

STA

STA

STA

RTS

#255

PLAY

#100

SET

#0

VCREG1

ATDCY1

SUREL1

FRELO1

FREHI1

;Double delay

loop to play

sound

;Null registers

with©

KIDS' ASSEMBLER • ASSEMBLY SOUNDS

ADRS OPCODE OPERAND

49152

49154

49157

49159

49162

49165

49167

4917©

49172

49175

49177

49180

49182

49184

49185

49187

49189

49190

49192

49194

LDA#

STA

LDA#

STA

STA

LDA#

STA

LDA#

STA

LDA#

STA

LDY#

LDX#

INX

CPX#

BNE

INY

CPY#

BNE

LDA#

15

$D418

128

$D405

$D406

195

$D400

16

$D401

17

$D404

0

0

255

49184

100

49182

0

277

49196

49199

49202

49205

49208

49211

STA

STA

STA

STA

STA

RTS

$D404

$D405

$D406

$D400

$D401

You should try changing everything from the size of the delay

loop to the values stored in the registers. By doing so, you will

discover the sounds you need and hear ones that will surprise you.

Combine the sounds with your sprites and you'll have the makings

of an arcade game!

SUMMARY

This chapter is important in that we used two special chips and

sets of registers in your Commodore 64. With the VIC chip, we

were able to access sprite graphics. This allowed us to produce and

move special characters we can create ourselves. Secondly, we used

the registers in the SID chip to create sound. The combination of

these two sets of registers in single programs will let you do some

very interesting things. In the next chapter, we'll look at some ex

amples.

278

CHAPTER 15

DOWN THE ROAD

Introduction

This last chapter is to help you go on in assembly language once

you're finished here. Like any other language, programming or

spoken, the real secret is to use it. If you study German in school,

for example, and you never use it, you'll forget it. On the other

hand, if you live in Germany and are constantly speaking German,

soon you will become fluent. The same is true with assembly

language. When you sit down to write a program, even in BASIC,

ask yourself, "How could the same thing be done in assembly

language?" You can start off with little subroutines to speed up

your BASIC programs and work your way up to full blown pro

grams, all written with an assembler.

Practice will make perfect, but you still have a lot ofnew opcodes

to learn with which you can practice. We will look at some tricks to

help you learn new opcodes.

Finally, you're going to need more materials to study to learn

assembly language. For the Commodore 64, there are some

available materials that are highly recommended. We'll look at

those so that you can keep progressing beyond this point.

279

MERGING SUBROUTINES

Assembly language programming is best digested as a 50 course

dinner. If you take just a little at a time, you will be able to consume

everything. These little bites are best conceived as "subroutines."

This actually involves writing little programs that do something as

we have done in this book. Each little program, when merged with

other little programs, becomes a big program.

To see how to append programs, we will have to use the Merlin

and Commodore assemblers as examples since they both can ap

pend programs and the Kids' Assembler cannot. That means, that

you can load one source code into the editor and then tack on

another source code to it.

Appending With Merlin

To append one source code to another, first load one source code

using the "L" instruction from the EXECUTIVE MODE. Once

the first file is loaded return to the EXECUTIVE MODE by press

ing *Q' from the editor, and use the "A" option to append the se

cond file.

Appending with Commodore EDTTOR64

Once the editor is in memory, use the GET command to load the

first file. All files loaded with GET begin at line 1000. List your

program to see the highest line number. For example, let's say that

the highest line number in your program is 1200. To append a pro

gram to the one in memory, use the GET command with the

parameter for the first line number. That line number must be

higher than 1200. For example, we'll append FILE 2 to FILE 1.

1. GET "FILE 1" {RETURN}

2. LIST {RETURN}

Highest line number is 1200

3.GET"FILE2",1210

Now FILE 2 would be appended to FILE 1.

280

To do something new with the programs we have developed in

this book, let's append some. In the last chapter we made a "Planet

Destroyer" sprite and "Assembly Sounds." Let's put those two

together, edit them and see what we get. Load "Planet Destroyer"

and then append "Assembly Sounds." We'll look at the program

first and then explain what editing changes were made to make it.

(We'll use the Merlin listing since the only difference is in the for

matting of EQUates, and with the large number of variables defin

ed, having two sets would be confusing.)

GENERAL SLOW NOISY SPACE SPRITE

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore * = $C000}

NOISY SPRITE ROCKET

t ******* -i r*******************

SPRITE©

ENABLE

COLOR0

SP0X

SP0Y

MSBX

SHOUSE

SIGVOL

ATDCY1

SUREL1

VCREG1

FRELO1

FREHI1

HI

WHY

EX

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$7F8

$D015

$D027

$D000

$D001

$D010

$0340

$D418

$D405

$D406

$D404

$D400

$D401

$C300

$C304

$C306

281

;SPRITE SUBROUTINE
r ******i

JSR

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

CLEANUP STA

INX

CPX

BNE

LDX

BUILD LDA

STA

INX

CPX

BNE

LDA

STA

LDX

STX

LDA

STA

MOVE STX

LDA

STA

INC

LDX

;SOUND SUBROUTINE

$E544

#$©D

SPRITE©

#1

ENABLE

#2

COLOR©

#©

#$©0

SHOUSE,X

#64

CLEANUP

#©

DATA.X

SHOUSE.X

#63

BUILD

#©

MSBX

#©

EX

#7©

WHY ;Preserve "Y"

SP0X

WHY

SPOY

EX ;Increment X

through EX

EX

;NO PAUSE LOOP SINCE THE SOUND SLOWS

;DOWN MOVEMENT
■ WWW W WWWWWWWWWWWWWWWi

J

LDA

STA

#1©

HI

282

START

SET

PLAY

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDY

LDX

INX

CPX

BNE

INY

CPY

BNE

LDA

STA

STA

STA

STA

STA

INC

LDA

CMP

BNE

LDX

CPX

BNE

#15

SIGVOL

#128

ATDCY1

SUREL1

HI

FRELO1

HI

FREHI1

#17

VCREG1

#0

#0

#20

PLAY

#20

SET

#0

VCREG1

ATDCY1

SUREL1

FRELO1

FREHI1

HI

HI

#40

START

EX

#254

MOVE ;Back to Sprite

;END OF PROGRAM AND SPRITE DATA

DATA

RTS

DFB

DFB

DFB

DFB 0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,128,0,0

224,0,0,252,0,0

255,128,0

283

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

255,240,28

31,255,240

63,255,63

63,255,63

31,255,240

255,240,0

255,128,0

252,0,0

224,0,0

128,0,0

0,0,0,0,0,0

If you look at the sprite data, it's the same we used with the

Planet Destroyer sprite. You can change it to any sprite configura

tion you want, and using your append features of your assembler, it

is easy. The main changes we made were in the form of substitution.

Instead of using the INX instruction to increment the horizontal

position of the sprite, we stored the X position in the 'variable'

(location) we called EX and incremented the value in EX. We also

used a variable, WHY, to store the vertical position of the sprite.

The reason we did that is because the X and Y registers were heavily

used in producing our sound. Since the sound values were not

directly related to the movement values of X and Y, we needed

some way to preserve the X and Y values in movement. By only

using the values in EX and WHY in the movement segment and

resetting the X and Y registers in the sound portion of the program,

we were able to keep everything moving and sounding the way we

intended.

While the actual movement mechanism in not tied to the sound,

the speed of the movement is. If the various sizes of the loops in the

sound segment of the program are shortened, the sound will change

and so will the speed of the rocket. The way it is now, it makes a

"space gurgle" and creeps along at a snail's pace. (Actually, it's

sneaking up on a planet to destroy.)

284

Finally, you probably noticed that all of the EQUates are

together at the beginning of the program. This was done with the

MOVE function on Merlin. With the Commodore 64 Macro As

sembler Development System, you can do the same thing by chang

ing the line numbers of the equate (=) directives. Then, delete the

old line numbers and everything is moved.

APPENDING AND INSERTING SUBROUTINES

In the above program, we essentially stuck two programs

together; one on top of the other. Now, we'll do something a little

more complex. We'll start the same way, though. First, load

"Planet Destroyer" and then append "Joystick Draw." What

we're going to do is to insert the joystick read subroutine inside the

sprite routine. Take out the routine to increment the X register to

move, and in its place put the joystick read subroutine. Then,

change the JMPs to PRINT to JMPs to MOVE. Both the Merlin

and Commodore editors have CHANGEcommands you can use to

do this quickly.

We added another wrinkle to our joystick program. When the

values in EX and WHY reach the limits of0 and 255, we don't want

them to "turn over." Instead, we just have them jump to the

routine that will increment them or decrement them so they stay

within the registers' boundaries. Thus, when UP or LEFT is 0, the

program will JMP to DOWN or RIGHT. Similarly, when DOWN

or RIGHT reaches 255, the value is decremented by JMPs to UP

and LEFT.

LABEL OPCODE OPERAND COMMENT

{Merlin ORG $C000}

{Commodore * = $C000}

JOYSTICK SPRITE
* *

****•**************•:

285

CLEAR

JSTICK

OFSET

FIRE

EX

WHY

SPRITE©

ENABLE

COLOR©

SPOX

SPOY

MSBX

SHOUSE

.********

9

CLEANUP

BUILD

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

JSR

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

STA

INX

CPX

BNE

LDX

LDA

STA

INX

CPX

BNE

LDA

STA

LDA

STA

LDA

$E544

$C3©©

$C3©2

$C3©4

$C3©6

$7F8

$D©15

$D©27

$D©0©

$D©©1

$D©1©

$034©

CLEAR

#$©D

SPRITE©

#1

ENABLE

#2

COLOR©

#©

#$©©

SHOUSE.X

#64

CLEANUP

#©

DATA.X

SHOUSE.X

#63

BUILD

#©

MSBX

#$FF

OFSET

#16

$DC01

286

STA

LDA

STA

STA

LDA

STA

FIRE

#40

EX

SP0X

#70

WHY

;Starting X

position of

Sprite

;Starting Y

position of

Sprite

STA SP0Y

;READ THE JOYSTICK

START

PAUSE

UP

LDA

EOR

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

LDX

INX

CPX

BNE

JMP

DEC

LDY

CPY

JSTICK

OFSET

#1

UP

#2

DOWN

#4

LEFT

#8

RIGHT

FIRE

END

m

#254

PAUSE

START

WHY

WHY

#0 ;Check for

adjustment

BEQ DOWN

287

DOWN

LEFT

RIGHT

END

;MOVEMENTOF
.*************

MOVE

MPAUSE

JMP

INC

LDY

CPY

BEQ

JMP

DEC

LDX

CPX

BEQ

JMP

INC

LDX

CPX

BEQ

JMP

RTS

SPRITE

STX

STY

LDX

INX

CPX

BNE

JMP

MOVE ;Branch to

MOVE

subroutine

WHY

WHY

#255

UP

MOVE

EX

EX

#0

RIGHT

MOVE

EX

EX

#255

LEFT

MOVE

SPOX

SPOY

#0

#254

MPAUSE

START

;SPRITE DATA
.*********************i r********

DATA DFB 0,0,0,0,0,0,0,0,0

DFB 0,0,0,0,0,0,128,0,0

DFB 224,0,0,252,0,0

DFB 255,128,0

DFB 255,240,28

DFB 31,255,240

DFB 63,255,63

288

DFB

DFB

DFB

DFB

DFB

DFB

DFB

DFB

63,255,63

31,255,240

255,240,0

255,128,0

252,0,0

224,0,0

126,0,0

0,0,0,0,0,0

These two programs should give you an idea ofhow to merge two

smaller routines into a single larger one. Now you can treat the

larger routines as subroutines themselves. You have a subroutine

that will move your sprites and create sound and one that will move

sprites with your joystick. By appending different sprite data, ad

ding additional sprites, and appending other subroutines you can

build larger programs. The trick is to build a library of subroutines,

and instead of starting from scratch every time you sit down to pro

gram, you can start with a substantial amount of the work already

done and debugged. This also points to the importance of getting a

good assembler. While the Kids' Assembler is fine for learning

assembly language programming and small programs, it becomes

increasingly difficult to use as your programs increase. Starting all

over each time you program is a waste of time, and in the long run

you will not learn as much since more effort is used keying in old

code than creating new code.

GETTING TO KNOW THE OTHER OPCODES

We've covered the most commonly used opcodes and addressing

modes, but there are still more to learn and use. The best way to

learn how to use new opcodes is to first isolate them, and then test

them with simple programs. Often novice assembly language pro

grammers will insert a new opcode into a large program, and while

it may or may not work, it is difficult to see why it did or did not.

Usually the best way to see if an opcode does what you think it

does is to put it into a routine that will put a value into the ac

cumulator. Then have that value sent to the screen. If the screen

character is what you expect; then you can assume that the opcode

did what you thought. In the listing in Appendix A, the Kids'

289

Assembler there has all of the opcodes for the 6510, and Appendix

B has an alphabetical listing of all 6510 opcodes.

A good book on 6502 opcodes (which are identical to the

6510opcodes) is:

6502 Assembly Language Programming

By Lance A. Leventhal

Berkeley, CA : Osborne/McGraw-Hill

This book describes in technical detail what each code does.

RESOURCES FOR LEARNING MORE ABOUT ASSEMBLY

LANGUAGE PROGRAMMING ON THE COMMODORE 64

As more good assemblers are becoming available for the Com

modore 64, there should be more resources for learning assembly

language programming. Most assembler manuals have very little

about programming. They usually just explain how to use the

assembler, more or less assuming you already know how to pro

gram. However, from what you know now, you should be able to

understand what the assembler manuals are talking about and use

them to some advantage.

Since there are a wide variety of resources for learning assembly

language, we'll divide them into several categories. First, we'll look

at reference manuals. These are books used to look things up.

Secondly, we'll see what other books there are on "how to" do

assembly language programming. Third, we'll look at magazines

you might read to either learn assembly language programming or

see some examples of assembly language programs. Before all of

that, though, we'll look at the best resource possible, Commodore

64 User Groups.

USER GROUPS

The most valuable tips, techniques and education you can receive

for assembly language on the Commodore 64 is from a user group.

These are people who own Commodore 64's and get together to

share their common interest. These groups typically have several

290

members who are kids like yourself. (My group even has a lot of

adults who are just like kids.) If you attend meetings in your area,

not only will you meet other kids who have Commodore 64's, you

can learn a lot about assembly language programming by just ask

ing.

Now you may wonder why people are going to give you all of this

free information. It's simple; assembly language programmers love

to brag. I do it all the time. If someone asks about an assembly

language procedure, nothing makes me feel better than being able

to answer their question. If you know BASIC, you've probably ex

perienced the same thing. You can help someone by showing off!

What could be better? Not only will you learn something, you'll

make someone else feel very good about themselves.

In addition to getting a wealth of information, you can also gain

access to public domain (that means FREE!) software. Since a good

deal of public domain software is written in assembly language, you

can use assembly listing to see how others write assembly code on

the Commodore 64.

REFERENCE BOOKS

There are two reference books no assembly language program

mer should be without. First, there is;

Commodore 64 Programmer's Reference Guide

Commodore Business Machines, Inc.

And Howard W. Sams & Co., Inc.

This book has all of the technical details you will need to work your

Commodore 64. Most important is its description of the Kernal

routines in your machine.

Secondly, your assembly language programming will be greatly

enhanced by the book,

Mapping the Commodore 64

By Sheldon Leemon

Greensboro, N.C. : COMPUTE! Publications, Inc., 1984

291

All of the built-in subroutines in your Commodore 64, along with

substantial explanations of their use are contained in this book. It is

well written, and there are several example programs in BASIC that

illustrate how the various subroutines work.

HOW-TO BOOKS

There really are not a lot of books available for assembly

language programming on the Commodore 64 right now.

However, there are three books you might want to examine for the

transition from BASIC to machine/assembly language.

The Intermediate Commodore 64

ByGuyGrotke

Chatsworth, CA : Datamost, 1984

This book builds a bridge between BASIC and assembly

language programming. Some of the more advanced aspects of

graphics, files and basic assembly language procedures are explain

ed. There are a number of listings of assembly language routines

and the appendix has all of the decimal and hexadecimal values for

the 6510 opcodes.

Commodore 64 Exposed

By Bruce Bayley

Melbourne, Australia: Melbourne House, 1983

Like the Intermediate Commodore 64, this is a "transition

book" between BASIC and more advanced techniques. There are

some assembly language listings, a good memory map and lots of

good tips.

Inside the Commodore 64

By Don French

Cannon Falls, MN : French Silk

This is actually the manual that accompanies the French Silk

Assembler. More than most manuals, this one goes beyond just ex

plaining how to use the assembler. There are several example pro-

292

grams, an excellent memory map, and you can get it with the

assembler or without.

MAGAZINES

The problem with most magazines for the Commodore 64 is that

they create machine code with BASIC programs. As a result, their

listings are in the form of READ/DATA statements that are POK-

Ed into memory. You can't see the assembly opcodes, but rather

you just get a pile of decimal machine codes. However, there are

some assembly listings, and you can still learn something about

machine language programs even if the listings are given in BASIC.

With Merlin's Sourceror, you can create source code from the

machine code generated with the BASIC programs in the

magazines. Thus, with the right tools, you can extend your

knowledge a good deal.

The most likely source for actual assembly listings is in Com

mander magazine. Like most other magazines, this one will have

machine code generated by BASIC programs, but it also has

disassembled listings as well. Previous issues have contained series

articles, such as "Explorations With Assembly Language" by Eric

Giguere. You'll find plenty of new material just about every month

in the Commander.

A second source for machine code is in COMPUTE!'s Gazette.

There's a regular series, "Machine Language For Beginners" by

Richard Mansfield you will find useful. In previous articles, there

have been assembly listings for various aspects ofmachine language

techniques. Mansfield handles the material in small, clear chunks,

and you can get a lot here.

Third, RUN: The Commodore 64 & VIC 20 Magazine, has a

number of programs and articles dealing with machine and

assembly language programming. Several very sophisticated pro

grams can be found in this publication.

Other magazines for the Commodore 64 are available as well.

The best idea is to take a look at the various issues, including the

three recommended above, and see if there are any articles or pro-

293

grams on assembly/machine language programming. An even bet

ter idea would be to write a letter to the editor ofyour favorite Com

modore 64 magazine and tell them you want to see more listings and

articles on assembly language programming.

YOU'RE ON YOUR OWN

By this stage, you're well on your way to becoming a full-fledged

assembly language programmer. If you've gotten this far, you're

way ahead of where you were at the beginning. You should be able

to write routines of your own creation with the more common op

codes and most addressing modes. What you do next is up to you.

If nothing else, I hope to have conveyed the fundamentals of

assembly language programming and given you enough confidence

to experiment on your own. If you can do that; then you'll be able

to go much further. Above all, assembly language programming

should be an exciting challenge. Put another way, it should be plain

fun. Before you know it, you'll wonder why anyone programs in

BASIC.

Now you can FLY.

294

295

296

APPENDICES

APPENDIX A: KIDS' ASSEMBLER

APPENDIX B: 6510 OPCODES

APPENDIX C: MEMORY MAP 1: DIAGRAM

APPENDIX D: MEMORY MAP 2: PLACES TO VISIT

APPENDIX E: BASIC TOKEN CHART

APPENDIX F: HEXADECIMAL-DECIMAL CONVERSION

% CHART

APPENDIX G: DECIMAL-HEXADECIMAL CONVERSION

CHART

APPENDIX H: SCREEN STORAGE ADDRESS TABLE

APPENDIX I: COLOR STORAGE LOCATION TABLE

APPENDIX J: ASCII CODE

APPENDIX K: SCREEN STORAGE DISPLAY CODES

297

298

APPENDIX A

KIDS' ASSEMBLER

This version of the Kids' Assembler has all opcodes for the 6510.

There are two ENDING ROUTINES, one for disk and one for

tape. The disk version is in the main listing between lines 740 and

960. If you are using a cassette, there is a second ENDING

ROUTINE at the end of the main listing.

10 POKE 53281,1 : POKE 53280,1 : PRINTCHR$(144)

20 PRINT CHR$(147)

30 DIM DEC%(151),OPCODE$(151),BYTE%(151)

40 GOSUB 2510

50 FOR I = 0 TO 150 : READ DEC%(I): READ

OPCODE$(I): READ BYTE%(I)

60 NEXT I

70 PRINT CHR$(146);CHR$(147)

80 PRINT "ADRS";

TAB(10);"OPCODE";TAB(25);"OPERAND"

90 FOR X= 1 TO 40 : PRINT CHR$(114);: NEXT

100 PRINT
110 REM ****************************

120 REM SET ADDRESS AND INPUT OPCODE

299

130 REM ***************

140 SA = 0 : PRINT "PRESS {RETURN}

TO DEFAULT TO

49152"

150 INPUT'STARTING ADDR";SA : IF SA = 0

THEN SA = 49152

160BA = SA

17© PRINT SA;TAB(10)180 INPUT OC$: IF OC$ = "Q"

THEN 74©

19©C = 0

200 IF OC$ = OPCODE$(C) THEN D% = DEC%(C):

B% = BYTE%(C): GOTO 230

210 C = C+1 : IF C = 152 THEN PRINT

TAB(10);CHR$(18);"ERROR";CHR$(146): GOTO 170

220 GOTO 200

230 IF B% = 1 THEN POKE SA,D%: SA = SA +1 :

GOTO 170

240 REM *************

250 REM ENTER OPERAND

260 REM *************

270 PRINT TAB(25);:PRINT CHR$(145);:INPUT OPR$

280 IF LEFT$(0PR$,1) < > "$" THEN

OPER = VAL(OPR$)

290 IF LEFT$(OPR$,1) = "$" THEN GOSUB 450

300 IF OPER > 65535 THEN GOSUB 590 : OPER = 0:

GOTO 270

31© IF OC$ = "BNE" OR OC$ = "BEQ"

THEN GOSUB 66©

320 IF OC$ = "BCC" OR OC$ = "BCS"

THEN GOSUB 660

330 IF OC$ = "BPL" OR OC$ = "BMI"

THEN GOSUB 660

340 IF OC$ = "BVC" OR OC$ = "BVS"

THEN GOSUB 660

350 IF BF= 1 THEN BF = © : GOTO 270

360 IF OPER > 255 AND B% < 3 THEN GOSUB 520:

OPER = 0: GOTO 270

37© IF OPER > 255 THEN GOSUB 600

380 REM ************

390 REM COMPILE CODE

300

400 REM ************

410 IF B% = 2 THEN POKE SA,D% : SA = SA + 1

420 IF B% = 2 THEN POKE SA.OPER : SA = SA +1 :

OPER = 0: GOTO 170

430 POKE SA,D%: SA = SA +1

440 POKE SA,LB : SA = SA +1 : POKE SA,HB :

SA = SA + 1 :OPER = 0: GOTO 170
450 REM **********************

460 REM CONVERT HEX TO DECIMAL
470 REM **********************

480H$=MID$(OPER$,2)

490 FOR L= 1 TO LEN(H$): HD = ASC(MID$(H$,L,1))

500OPER = OPER*16+HD-48 + ((HD> 57)*7)
510 NEXT L : RETURN

520 REM **********

530 REM ERROR TRAP

540 REM **********

550 PRINT CHR$(18);"ERROR- MUST BE LESS

THAN 256"

560 FOR W= 1 TO 400 : NEXT W : PRINT CHR$(146);:

PRINT CHR$(145)570 FOR X = 1 TO 27 : PRINT

CHR$(32);: NEXT

580 PRINT CHR$(157);CHR$(157);CHR$(145) :RETURN

590 PRINT CHR$(18);"VALUE OVER 65535

($FFFF)";CHR$(146): RETURN
600 REM ************************

610 REM CONVERT TO 2 BYTE NUMBER
620 REM ************************

630 LB = OPER -1NT(OPER/256)*256

640HB = INT(OPER/256)

650 RETURN

660 REM *************

670 REM BRANCH OFFSET
680 REM *************

690IFSA> OPER AND SA - OPER > 128 THEN

PRINT "BRANCH TOO

FAR":BF=1:OPER = 0:RETURN

700IFSA> OPER AND OPER-SA > 127 THEN

PRINT "BRANCH TOO

FAR":BF = 1:OPER = 0:RETURN

301

710 IFSA > OPERTHEN OPER= 254-(SA-OPER)

720IFSA < OPERTHEN OPER = (OPER-SA)-2

730 RETURN

74© REM **************

750 REM ENDING ROUTINE

tOv ntM

770 NB = SA-BA

780 PRINT CHR$(147)

790 FOR X= 1 TO 5 : PRINT: NEXT

800 INPUP'SAVE PROGRAM(Y/N)";AN$

810IFAN$ = "Y"THEN870

820 PRINT: PRINT: PRINT "PROGRAM

IS";NB;"BYTES LONG"

830 PRINT "TO EXECUTE 'SYS"';BA : PRINT

840 INPUT "(B)EGIN AGAIN OR (E)ND";DE$

850IFDE$ = "B"THEN70

860 PRINT: PRINT"END" : END

870 PRINT CHR$(147): FOR X=1 TO 5 : PRINT:

NEXT

880 LB = BA - INT(BA/256)*256 : HB = INT(BA/256)

890 INPUT "ENTER FILE NAME";NF$

:NF$ = "0:" + NF$ + STR$(BA) + ",P,W"

900 OPEN2,8,2,NF$

910 PRINT#2,CHR$(LB) + CHR$(HB)920 FOR X= BA

TOSA-1:OC=PEEK(X)

930 PRINT#2,CHR$(OC)940 NEXTX

950 CLOSE2

960 GOTO 820

970 REM ***********

980 REM OPCODE DATA

990 REM ***********

1000 DATA 0,BRK,1

1010 DATA 1,(ORA-X),2

1020 DATA 5,ORA-Z,2

1030 DATA 6,ASL-Z,2

1040 DATA 8,PHP,1

1050 DATA 9,ORA#,2

1060 DATA 10,ASL-A,1

1070 DATA 13,ORA,3

1080 DATA 14,ASL,3

302

1090 DATA 16,BPL,2
1100 DATA 17,(0RA-Y),1

1110 DATA 21,0RA-ZX,2

1120 DATA 22,ASL-ZX,2

1130 DATA 24,CLC,1

1140 DATA 25,ORA-Y,3

1150 DATA 29,ORA-X,3

1160 DATA 30,ASL-X,3

1170 DATA 32,JSR,3

1180 DATA 33,(AND-X),2

1190 DATA 36.BIT-Z.2

1200 DATA 37,AND-Z,2

1210 DATA 38,ROL-Z,2

1220 DATA 40,PLP,1

1230 DATA 41 ,AND#,2

1240 DATA 42,ROL-A,1

1250 DATA 44,BIT,3

1260 DATA 45,AND,3

1270 DATA 46,ROL,3

1280 DATA 48,BMI,2

1290 DATA 49,(AND - Y),2

1300 DATA 53,AND-ZX,2

1310 DATA 54,ROL-ZX,2

1320 DATA 56,SEC,1

1330 DATA 57,AND-Y,3

1340 DATA 61,AND-X,3

1350 DATA 62,ROL-X,3

1360 DATA 64,RTI,1

1370 DATA 65,(EOR-X),2

1380 DATA 69,EOR-Z,2

1390 DATA 70,LSR-Z,2

1400 DATA 72,PHA,1

1410 DATA 73,EOR#,2

1420 DATA 74,LSR-A,1

1430 DATA 76,JMP,3

1440 DATA 77,EOR,3

1450 DATA 78,LSR,3

1460 DATA 80,BVC,2

1470 DATA 81 ,(E0R-Y),2

1480 DATA 85,EOR-ZX,2

303

1490 DATA 86,LSR-ZX,2

1500 DATA 88,CLI,1

1510 DATA 89,EOR-Y,3

1520 DATA 93.EOR-X.3

1530 DATA 94.LSR-X.3

1540 DATA 96,RTS,1

1550 DATA 97,(ADC-X),2

1560 DATA 101,ADC-Z,2

1570 DATA 102,ROR-Z,2

1580 DATA 104,PLA,1

1590 DATA 105,ADC#,2

1600 DATA 106,ROR-A,1

1610 DATA 108,(JMP),3

1620 DATA 109,ADC,3

1630 DATA 110,ROR,3

1640 DATA 112,BVS,2

1650 DATA 113,(ADC-Y),2
1660 DATA 117,ADC-ZX,2

1670 DATA 118,ROR-ZX,2

1680 DATA 120,SEI,1

1690 DATA 121.ADC-Y.3

1700 DATA 125,ADC-X,3

1710 DATA 126,ROR-X,3

1720 DATA 129,(STA-X),2

1730 DATA 132,STY-Z,2

1740 DATA 133,STA-Z,2

1750 DATA 134,STX - Z,2

1760 DATA 136,DEY,1

1770 DATA 138,TXA,1

1780 DATA 140,STY,3

1790 DATA 141 ,STA,3

1800 DATA 142,STX,3

1810 DATA 144,BCC,2

1820 DATA 145,(STA-Y),2

1830 DATA 148.STY-ZX.2

1840 DATA 149,STA-ZX,2

1850 DATA 150.STX-ZX.2

1860 DATA 152,TYA,1

1870 DATA 153,STA-Y,3

1880 DATA 154,TXS,1

304

1890 DATA 157,STA-X,3

1900 DATA 160,LDY#,2

1910 DATA 161,(LDA-X),2

1920 DATA 162,LDX#,2

1930 DATA 164.LDY-Z.2

1940 DATA 165.LDA-Z.2

1950 DATA 166,LDX-Z,2

1960 DATA 168,TAY,1

1970 DATA 169,LDA#,2

1980 DATA 170,TAX,1

1990 DATA 172,LDY,3

2000 DATA 173,LDA,3

2010 DATA 174,LDX,3

2020 DATA 176,BCS,2

2030 DATA 177,(LDA-Y),2

2040 DATA 180,LDY-ZX,2

2050 DATA 181 ,LDA - ZX.2

2060 DATA 182,LDX-ZY,2

2070 DATA 184,CLV,1

2080 DATA 185,LDA-Y,3

2090 DATA 186,TSX,1

2100 DATA 188,LDY-X,3

2110 DATA 189,LDA-X,3

2120 DATA 190,LDX-Y,3
2130 DATA 192,CPY#,2

2140 DATA 193,(CMP-X),2
2150 DATA 196,CPY-Z,2

2160 DATA 197,CMP-Z,2
2170 DATA 198,DEC-Z,2

2180 DATA 200,INY,1

2190 DATA 201 ,CMP#,2
2200 DATA 202,DEX,1

2210 DATA 204.CPY.3

2220 DATA 205,CMP,3

2230 DATA 206,DEC,3

2240 DATA 208,BNE,2

2250 DATA 209,(CMP - Y),2

2260 DATA 213.CMP-ZX.2

2270 DATA 214,DEC-ZX,2
2280 DATA 216.CLD.1

305

2290 DATA 217,CMP-Y,3

2308 DATA 221 ,CMP- X,3

2310 DATA 222,DEC - X,3

2320 DATA 224,CPX#,2

2330 DATA 225,(SBC - X),2

2340 DATA 228,CPX - Z,2

2350 DATA 229,SBC - Z,2

2360 DATA 230,1NC - Z,2

2370 DATA 232.INX.1

2380 DATA 233,SBC#,2

2390 DATA 234,NOP,1

2400 DATA 236,CPX,3

2410 DATA 237,SBC,3

2420 DATA 238,INC,3

2430 DATA 240.BEQ.2

2440 DATA 241 ,(SBC - Y),2

2450 DATA 245,SBC - ZX,2

2460 DATA 246JNC - ZX,2

2470 DATA 248,SED,1

2480 DATA 249.SBC - Y,3

2490 DATA 253.SBC - X,3

2500 DATA 254,INC-X,3

2510 REM ******

2520 REM HEADER

2530 REM ******

2540 CR$ = "(C) COPYRIGHT 1984" : NM$= "BY

WILLIAM B. SANDERS"

2550 BK$ = "ASSEMBLY LANGUAGE FOR KIDS:"

:CM$= "COMMODORE 64"

2560 IS$ = "SEE" : F$ = "FOR DOCUMENTATION"

2570 H = 20 - LEN(CR$)/2: PRINT TAB(H);CR$

2580 H = 20 - LEN(NM$)/2 : PRINT TAB(H);NM$

2590 PRINT: H = 20 - LEN(IS$)/2: PRINT TAB(H);IS$

PRINT

2600 H = 20 - LEN(BK$)/2 : PRINT TAB(H);BK$

:H = 20 - LEN(CM$)/2: PRINT TAB(H);CM$

2610 H = 20 - LEN(NM$)/2 : PRINT TAB(H);NM$:

PRINT

2620 H = 20 - LEN(F$)/2 : PRINT TAB(H);F$

2630 LD$ = "LOADING ARRAY" : FOR X = 1 TO 10 :

306

PRINT: NEXT: H = 2© - LEN(LD$)/2

2640 PRINT TAB(H);CHR$(18);LD$

2650 RETURN

CASSETTE ENDING ROUTINE

740 REM **************

750 REM ENDING ROUTINE
760 REM **************

770NB = SA-BA

780 PRINT CHR$(147)

790 FOR X = 1 TO 5 : PRINT: NEXT

800 INPUT'SAVE PROGRAM(Y/N)";AN$

810 IF AN$ = "Y" THEN 870

820 PRINT: PRINT: PRINT "PROGRAM

IS";NB;"BYTES LONG"

830 PRINT "TO EXECUTE 'SYS"';BA : PRINT

840 INPUT "(B)EGIN AGAIN OR (E)ND";DE$

850IFDE$ = "B"THEN70

860 PRINT: PRINT"END" : END

870 PRINT CHR$(147): FOR X = 1 TO 5 : PRINT

NEXT

880 REM * * * TAPE SAVE * * *

890 INPUT "ENTER FILE NAME";NF$

900 OPEN21,1,1,NF$

910 PRINT#21,BA

920 FOR X = BA TO SA -1: OC = PEEK(X)

930 PRINT#21,OC

940 NEXT X

950 CLOSE21

960 GOTO 820

CASSETTE PROGRAM LOADER

Since you cannot load from tape the same as you can from disk, a

special loader program is required. Your assembled program is sav

ed as a SEQ file, and it must be read into memory and then POKEd

into memory. The following program will do that for you and show

you where it is loaded on the screen:

307

10 PRINT CHR$(147):X = 0

20 INPUT "NAME OF FILE ";NF$

30OPEN21,1,0,NF$

40 INPUT#21,BA

50 INPUT#21,OC

60POKEBA + X,OC

70 PRINT BA + X,OC

80X = X + 1

90IFST = 0THEN50

100 CLOSE 21

308

APPENDIX B

6510 OPCODES

Machine

Opcodes

Dec

109

125

121

105

097

113

101

117

045

061

057

041

033

049

037

053

Hex

$6D

$7D

$79

$69

$61

$71

$65

$75

$2D

$3D

$39

$29

$21

$31

$25

$35

Mnemonic

Opcodes

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

AND

AND

AND

AND

AND

AND

AND

AND

Addressing

Mode

Absolute

Absolute,X

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page.X

309

Machine

Opcodes

Dec

014

030

010

006

022

144

176

240

044

036

048

208

016

000

080

112

024

216

088

184

205

221

217

201

193

209

197

213

236

224

228

204

192

196

206

222

Hex

$0E

$1E

$0A

$06

$16

$90

$B0

$F0

$2C

$24

$30

$D0

$10

$00

$50

$70

$18

$D8

$58

$B8

$CD

$DD

$D9

$C9

$C1

$D1

$C5

$D5

$EC

$E0

$E4

$CC

$C0

$C4

$CE

$DE

Mnemonic

Opcodes

ASL

ASL

ASL

ASL

ASL

BCC

BCS

BEQ

BIT

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CPX

CPX

CPX

CPY

CPY

CPY

DEC

DEC

Addressing

Mode

Absolute

Absolute,X

Accumulator

Zero Page

Zero Page,X

Relative

Relative

Relative

Absolute

Zero Page

Relative

Relative

Relative

Implied

Relative

Relative

Implied

Implied

Implied

Implied

Absolute

Absolute.X

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Absolute

Immediate

Zero Page

Absolute

Immediate

Zero Page

Absolute

Absolute,X

310

Machine

Opcodes

Dec

198

214

202

136

077

093

089

073

065

081

069

085

238

254

230

246

232

200

076

108

032

173

189

185

169

161

177

165

181

174

190

162

166

182

172

Hex

$C6

$D6

$CA

$88

$4D

$5D

$59

$49

$41

$51

$45

$55

$EE

$FE

$E6

$F6

$E8

$C8

$4C

$6C

$20

SAD

$BD

$B9

$A9

$A1

$B1

$A5

$B5

$AE

$BE

$A2

$A6

$B6

$AC

Mnemonic Addressing

Opcodes

DEC

DEC

DEX

DEY

EOR

EOR

EOR

EOR

EOR

EOR

EOR

EOR

INC

INC

INC

INC

INX

INY

JMP

JMP

JSR

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDX

LDX

LDX

LDX

LDX

LDY

Mode

Zero Page

Zero Page,X

Implied

Implied

Absolute

Absolute,X

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Absolute

Absolute,X

Zero Page

Zero Page

Implied

Implied

Absolute

(Indirect)

Absolute

Absolute

Absolute,X

Absolute,Y

Immediate

(Indirect.X)

(lndirect),Y

Zero Page

Zero Page,X

Absolute

Absolute,Y

Immediate

Zero Page

Zero Page,Y

Absolute

311

Machine

Opcodes

Dec

188

160

164

180

078

094

074

070

086

234

013

029

025

009

001

017

005

021

072

008

104

040

046

062

042

038

054

110

126

106

102

118

064

096

237

253

Hex

$BC

$A0

$A4

$B4

$4E

$5E

$4A

$46

$56

SEA

$0D

$1D

$19

$09

$01

$11

$05

$15

$48

$08

$68

$28

$2E

$3E

$2A

$26

$36

$6E

$7E

$6A

$66

$76

$40

$60

$ED

$FD

Mnemonic

Opcodes

LDY

LDY

LDY

LDY

LSR

LSR

LSR

LSR

LSR

NOP

ORA

ORA

ORA

ORA

ORA

ORA

ORA

ORA

PHA

PHP

PLA

PLP

ROL

ROL

ROL

ROL

ROL

ROR

ROR

ROR

ROR

ROR

RTI

RTS

SBC

SBC

Addressing

Mode

Absolute.X

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Accumulator

Zero Page

Zero Page,X

Implied

Absolute

Absolute,X

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Implied

Implied

Implied

Implied

Absolute

Absolute.X

Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

Accumulator

Zero Page

Zero Page,X

Implied

Implied

Absolute

Absolute,X

312

Machine

Opcodes

Dec

249

233

225

241

229

245

056

248

120

141

157

153

129

145

133

149

142

134

150

140

132

148

170

168

186

138

154

152

Hex

$F9

$E9

$E1

$F1

$E5

$F5

$38

$F8

$78

$8D

$9D

$99

$81

$91

$85

$95

$8E

$86

$96

$8C

$84

$94

$AA

$A8

$BA

$8A

$9A

$98

Mnemonic

Opcodes

SBC

SBC

SBC

SBC

SBC

SBC

SEC

SED

SEI

STA

STA

STA

STA

STA

STA

STA

STX

STX

STX

STY

STY

STY

TAX

TAY

TSX

TXA

TXS

TYA

Addressing

Mode

Absolute,Y

Immediate

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Implied

Implied

Implied

Absolute

Absolute,X

Absolute,Y

(lndirect,X)

(lndirect),Y

Zero Page

Zero Page,X

Absolute

Zero Page

Zero Page,Y

Absolute

Zero Page

Zero Page,X

Implied

Implied

Implied

Implied

Implied

Implied

313

314

APPENDIX C

Memory Map 1: Diagram

$E000-$FFFF

57344-65535

$D000-$DFFF

53248-57343

$C000-$CFFF

49152-53247

$A<D<D(D-$BFFF

40960-49151

8K Kernal ROM

4K I/O or

Character ROM

4KRAM

BASIC ROM

or ROM Plug-in

$8000-$9FFF

3276840959

8KRAM

or ROM Plug-in

315

$4000-$7FFF 16K RAM

16384-32767

$0000-$3FFF 16K RAM

00000-16383

$0800 BASIC begins

2048

316

APPENDIX D

MEMORY MAP 2 : Places to Visit

This map has been abridged so that you can quickly look up the

most-often used subroutines, pointers and free spaces you will be

using in assembly language programs. All addresses are given in

hexadecimal. Since there are fewer digits in hexadecimal numbers,

these values are easier to memorize. (You gotta do it sooner or

later.)

Address

$0-$2A

$2B-2C

$2D-$2E

$2F-$C4

$C5

$C6

$C7

What's There

Misc. Flags and Pointers

Pointer to beginning of BASIC

Pointer to start of variables / end of

BASIC program

Misc. BASIC flags, functions and

pointers

ASCII of last key pressed

Number of characters in keyboard

buffer

Screen reverse: 0 = off 18 = on

317

Address

$C8-$FA

$FB-$FE

$FF-$280

$281-$282

$283-$284

$285-$2BF

$2C0-$2FF

$300-$333

$334-$33B

$33C-$3FB

$3FC-$3FF

$340-$37F

$380-3BF

$3C0-$3FF

$400-$7FF

$7F8-$7FF

$800-$9FFF

$8000-$9FFF

$A000-$BFFF

$C000-CFFF

$D000

$D001

$D002

$D003

$D004

$D005

$D006

$D007

$D008

$D009

$D00A

$D00B

$D00C

$D00D

$D00E

What's There

Misc. flags, functions and pointers

Free zero page addresses

Misc. flags, functions and pointers

Beginning of BASIC memory

Top of memory

Misc. flags, functions and pointers

Block 11 sprite area

Misc. flags, functions and pointers

Free space

Cassette buffer-MACHINE

LANGUAGE STORAGE

Free space

Block 13 sprite area

Block 14 sprite area

Block 15 sprite area

Screen memory 24 x 40

Sprite pointers for data

BASIC RAM

Plug in ROM or MACHINE LANGUGE

STORAGE

BASIC ROM

Free RAM - MACHINE LANGUAGE

STORAGE

Sprite 0 X position

Sprite 0 Y position

Sprite 1 X position

Sprite 1 Y position

Sprite 2 X position

Sprite 2 Y position

Sprite 3 X position

Sprite 3 Y position

Sprite 4 X position

Sprite 4 Y position

Sprite 5 X position

Sprite 5 Y position

Sprite 6 X position

Sprite 6 Y position

Sprite 7 X position

318

Address What's There

$D00F

$D010

$D011-$D01F

$D020

$D021

$D022

$D023

$D024

$D025-$D026

$D027-$D02E

$D400-$D418

$D419

$D41A

$D41B

$D41C-$DD0F

$E000-$FFFF

$E544

$E566

$E716

$E8E7

$FF9F

$FFCF

$FFD2

$FFE4

$FFF0

Sprite 7 Y position

High byte of sprite X position

Misc. flags, functions and pointers

Border color register

Background color 0 register

Background color 1 register

Background color 2 register

Background color 3 register

Sprite multi-color registers

Sprite color registers

Sound registers

Game paddle 1 or 3

Game paddle 2 or 4

Random number generator

Mis. registers

KernalROM

Clear screen

Home cursor in upper left hand comer

Output to screen

Scroll screen

SCNKEY ■ scan keyboard

CHRIN - input a character

CHROUT - output a character

GETIN - get a character

PLOT - read or set X,Y postion of

cursor

319

320

APPENDIX E

BASIC TOKEN CHART

Your Commodore 64 reads BASIC statements as tokenized

codes. In a disassembled listing of a BASIC program, the following

tokenized values can be found representing the BASIC statements.

DEC HEX Keybd. DEC HEX Keybd.

128 $80 -END 165$A5-FN

129 $81 - FOR 166 $A6 - SPC(

130 $82-NEXT 167 $A7-THEN

131 $83 ■ DATA 168 $A8 - NOT

132 $84 ■ INPUT# 169 $A9 ■ STEP

133 $85-INPUT 170$AA- +

134 $86 -DIM 171 $AB--

135 $87 - READ 172 $AC - *

136 $88 ■ LET 173 $AD - /

137 $89 - GOTO 174 $AE -

138$8A-RUN 175$AF-AND

139 $8B - IF 176 $B0 - OR

140 $8C - RESTORE 177 $B1 -

141 $8D - GOSUB 178 $B2 - =

321

DEC HEX Keybd.

142 $8E - RETURN

143$8F-REM

144 $90 - STOP

145 $91 - ON

146 $92 - WAIT

147 $93 - LOAD

148 $94 - SAVE

149 $95 - VERIFY

150 $96 - DEF

151 $97 - POKE

152 $98 - PRINT*

153 $99 - PRINT

154 $9A - CONT

155 $9B - LIST

156 $9C - CLR

157 $9D - CMD

158 $9E - SYS

159 $9F - OPEN

160 $A0 - CLOSE

161 $A1 - GET

162 $A2 - NEW

163 $A3 - TAB(

164 $A4 - TO

DEC HEX Keybd.

179 $B3-

180 $B4 • SGN

181$B5-INT

182 $B6 - ABS

183 $B7■USR

184 $B8 ■ FRE

185 $B9 - POS

186 $BA • SQR

187 $BB - RND

188 $BC - LOG

189 $BD • EXP

190 $BE - COS

191$BF-SIN

192 $C0 - TAN

193 $C1 - ATN

194 $C2 - PEEK

195 $C3 - LEN

196 $C4 - STR$

197 $C5 - VAL

198$C6-ASC

199$C7-CHR$

200 $C8 - LEFT$

201 $C9 - RIGHT$

202 $CA - MID$

322

APPENDIX F

HEXADECIMAL-DECIMAL

CONVERSION

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

$00= 0 $33= 51 $66 = 102 $99 = 153 $CC = 204

$01= 1 $34= 52 $67 = 103 $9A = 154 $CD = 205

$02= 2 $35= 53 $68 = 104 $9B = 155 $CE = 206

$03 = 3 $36 = 54 $69 = 105 $9C = 156 $CF = 207

$04= 4 $37= 55 $6A = 106 $9D=157 $D0 = 208

$05= 5 $38= 56 $6B = 107 $9E=158 $D1=209

$06= 6 $39= 57 $6C=108 $9F=159 $D2 = 210

$07= 7 $3A= 58 $6D=109 $A0 = 160 $D3 = 211

$08= 8 $3B= 59 $6E=110 $A1=161 $D4 = 212

$09= 9 $3C= 60 $6F=111 $A2 = 162 $D5 = 213

$0A= 10 $3D= 61 $70 = 112 $A3 = 163 $D6 = 214

$0B= 11 $3E= 62 $71 = 113 $A4=164 $D7 = 215,

$0C= 12 $3F= 63 $72=114 $A5=165 $D8 = 216

$0D= 13 $40= 64 $73=115 $A6=166 $D9 = 217

$0E= 14 $41= 65 $74=116 $A7=167 $DA = 218

$0F= 15 $42= 66 $75=117 $A8=168 $DB = 219

$10= 16 $43= 67 $76=118 $A9 = 169 $DC = 220

$11= 17 $44= 68 $77=119 $AA = 170 $DD = 221

323

t
o

-
*

T
i
m
o
o
c
D
^
c
o
o
o
-
s
i
o
)

II
II

II
ll

II
II

II
II

II
II

II
II

II

I
V
)

I
V
)

-
^

C
O

m
m

f
f
\

X
r
w

X
r
w
v
?

-»
■
©

~
n ll

ll
n

n
ll

ll
ll

O
)

O
l

*>
.
C
O

N
>

II
II

II
II

II
I
H 8

II
II

II
II

II

§
2
§
8
8

(
D
0
0
S

O
)

O
1

II
II

II
II

II

m
*
*
*
.
m

*
*
±

f
f
\

t
f
\

f
f
\
£
A

*
*
*

*
*
<

*
*
*
>

+
*
*

*
*
+
■
m

+
*
*
■

+
*
*
■

*
"
*
■

X
*

X
r
w

X
r
w

\
J
*

^
r
*

j
^
J
w
7

y
^

w
*

X
r
9

X
T
?

\
I
*
T
T
7

T
T
7

X
T
*

\
J
J

X
T
*

X
T
*
^

0
>
0
>
0
1
0
i
C
X
l
C
X
l
C
X
l
C
X
l
C
X
l
O
i
C
X
i
C
X
i
C
X
i
C
X
l
C
J
i
a
i
C
X
i
C

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II

C
O

C
O
C
O

IV
)
-
^
©

0
0
0
0

■
^
C
O
0
0

0
0

0
0

IV
)
-
^
O

^
J

N
l

N
|

>
|

>|
c
o
o
o

-s
i
a
>

c
x
i

C
O

■n
J

">
J
O
)

_
l
©

C
D

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

§
8
5
8
S
3
5
5
5
5
B
5
5
?
B
8
8
S
5
8

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II

C
O

I
V
)

%
&
%

~
n
m
o
o

o
d

II
II

II
II

II

"
N
l

""
nJ

i*
sJ

"
n
J

"
n
!

CX
I
^

C
O

IV
)
-
^

B D B a 8
x
B

T
i
T
i
T
i
T
i
T
i
T
i
i
i
i
T
i
r
n
f
T
i
i
T
i
n
i
r
r
i
r
n
r
n
r
T
i
r
n
r
T
i
r
n
r
T
i
i
T
i
f
T
i
n
j
D
O

o
>
c
x
i
-
^
c
o
i
v
)
-
*
'
©
T
i
r
n
D
O
C
D
>
c
o
o
o
'
>
i
o
>
c
x
i
-
^
c
o
i
v
)
-
»
'
O
T
i
m

II
II

IV
)

I
V
)

2
§

-
n

t
i

"
n

"
n

t
\
t
i

"
n
m
d
O

0
3
>

II
11

11
n

11
11

II
II

II
II

II
II

II
II

II
II

ll
ll

11
11

11
11

ll
ll

ll
II

II
ll

II
II

II
II

II
II

a 8

APPENDIX G

DECIMAL-HEXADECIMAL

CONVERSION CHART

DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX

0 =$00 51 =$33 102 = $66 153 = $99 204 = $CC

1 =$01 52 =$34 103 = $67 154 = $9A 205 = $CD

2 =$02 53 =$35 104 = $68 155=$9B 206 = $CE

3 =$03 54 =$36 105 = $69 156 = $9C 207 = $CF

4 =$04 55 =$37 106 = $6A 157 = $9D 208 = $D0

5 =$05 56 =$38 107 = $6B 158 = $9E 209 = $D1

6 =$06 57 =$39 108 = $6C 159 = $9F 210 = $D2

7 =$07 58 =$3A 109 = $6D 160 = $A0 211=$D3

8 =$08 59 =$3B 110 = $6E 161=$A1 212 = $D4

9 =$09 60 =$3C 111=$6F 162 = $A2 213 = $D5

10 =$0A 61 =$3D 112 = $70 163 = $A3 214 = $D6

11 =$0B 62 =$3E 113 = $71 164 = $A4 215 = $D7

12 =$0C 63 =$3F 114 = $72 165 = $A5 216 = $D8

13 =$0D 64 =$40 115 = $73 166 = $A6 217 = $D9

14 =$0E 65 =$41 116 = $74 167 = $A7 218 = $DA

15 =$0F 66 =$42 117 = $75 168 = $A8 219 = $DB

16 =$10 67 =$43 118 = $76 169 = $A9 220 = $DC

17 =$11 68 =$44 119 = $77 170 = $AA 221 =$DD

325

DEC HEX DEC HEX DEC DEC HEX DEC HEX

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

= $12 69

= $13 70

= $14 71

= $15 72

= $16 73

= $17 74

= $18 75

= $19 76

= $1A 77

= $1B 78

= $1C 79

= $1D 80

= $1E 81

= $1F 82

= $20 83

= $21

= $22 85

= $23 86

= $24 87

= $25 88

= $26 89

= $27 90

= $28 91

= $29 92

= $2A 93

= $2B 94

= $2C 95

= $2D 96

= $2E 97

= $2F 98

= $30 99

= $31

= $32

= $33

84 =

100:

101:

102:

$45 120=

$46 121=

$47 122=

$48 123=

$49 124=

$4A 125=

$4B 126:

$4C 127=

$4D 128:

$4E 129:

$4F 130:

$50 131=

$51 132 =

$52 133=

$53 134 =

$54 135 =

$55 136 =

$56 137 =

$57 138=

$58 139=

$59 140=

$5A 141 =

$5B 142:

$5C 143=

$5D 144=

$5E 145=

$5F 146=

$60 147 =

$61 148 =

$62 149:

$63 150=

$64 151=

$65 152=

$66 153 =

=$78 171

=$79 172

$7A 173

$7B 174

$7C 175

$7D 176

;$7E 177

;$7F 178

=$80 179

=$81 180

:$82 181

:$83 182

:$84 183

=$85 184

:$86 185

:$87 186

=$88 187

:$89 188

$8A 189

$8B 190

=$8C 191

$8D 192

=$8E 193

=$8F 194

=$90 195

=$91 196

:$92 197

=$93 198

=$94 199

:$95 200

:$96 201

=$97 202

:$98 203

:$99 204

= $AB 222 = $DE

= $AC223 = $DF

= $AD 224 = $E0

= $AE 225 = $E1

= $AF 226 = $E2

= $B0 227 = $E3

= $B1 228 = $E4

= $B2 229 = $E5

= $B3 230 = $E6

= $B4 231=$E7

= $B5 232 = $E8

= $B6 233 = $E9

= $B7 234 = $EA

= $B8 235 = $EB

= $B9 236 = $EC

= $BA237 = $ED

= $BB 238 = SEE

= $BC239 = $EF

= $BD 240 = $F0

= $BE 241=$F1

= $BF 242 = $F2

= $C0 243 = $F3

= $C1 244 = $F4

= $C2 245 = $F5

= $C3 246 = $F6

= $C4 247 = $F7

= $C5 248 = $F8

= $C6 249 = $F9

= $C7 250 = $FA

= $C8 251=$FB

= $C9 252 = $FC

= $CA253 = $FD

= $CB254 = $FE

= $CC255 = $FF

326

APPENDIX H

SCREEN STORAGE

ADDRESS TABLE

$400

$428

$450

$478

$4A0

$4C8

$4F0

$518

$5B8

$5E0

$658

$680

$6A8

$6D0

$6F8

$720

$748

$770

$798

$7C0

1024

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

327

328

APPENDIX I

COLOR STORAGE LOCATION TABLE

$D80€ 55296

$D828 55336

$D878 55416

$D8A0 55456

$D8C8 55496

$D8F0 55536

$0918 55576

$D940 55616

$D968 55656

$D990 55696

$D9B8 55736

$D9E0 55776

$DAC8 55816

$DA30 55856

$DA58 55896

$DA8C 55936

$DAA8 55976

$DADO 56016

$DAF8 56056

$DB20 56096

$DB48 56136

$DB70 56176

$DB98 56216

$DBC0 56256

$DBE8 56296

329

330

APPENDIX J

ASCH CODE

These characters appear on the screen when sent from the ac

cumulator using the CHROUT subroutine or output to screen

routines (JSR $E716). See APPENDIX K for screen codes that ap

pear when the code is output with STA to a screen address

(1024-2023).

All values to the left are the ASCII values, and all characters,

symbols and descriptions to the right are screen displays

0

1

2

3

4

5 White

6

7

8 Sh-CMD

513

52 4

535

546

55 7

568

57 9

58:

off59;

9Sh-CMDon60<

10

11

61 =

62 >

102 □

103 0

104 a
105 £

106 HE
107 E
108 0

109 S
110 0
111 □

112 n
113 H

153

154

Lt Green

Lt Blue

155 Gray 3

156 Purple

157 CRSR left

158

159

160

161

162

163

164

Yellow

Cyan

SPACE

L

H
□
D

204

205

OthCt
£M)K)

207

208

209

210

211

212

213

214

215

□

n
□
■
□

D
Q

O

331

12 63?

13 RETURN 64 @

14 Lowercase 65 A

15 66 B

6 67 C

17 CRSR 68 D

down

18 RVS on 69 E

19 Home 70 F

CRSR

20 Delete 71 G

21 72 H

22 731

23 74J

24 75 K

25 76 L

26 77 M

27 78 N

28 Red 79 O

29 CRSR right 80 P

30 Green 81 Q

31 Blue 82 R

32 SPACE 83 S

33! 84T

34 " 85 U

35# 86V

36$ 87 W

37 % 88 X

38& 89Y

39' 90 Z

40(

41)

42*

43 +

44,

45-

46.

47/

480

491

502

91 [

92 £

93]

94 t

95 «-

96B

97 0
98 CD
99H

100 H

101 □

114 □

115 0

116 D
117 □

118 IE

165 G
166 B
167 Q

168 Q

□ 170 a

120 B
121 a

171 E

172 [1

122 B 173 H
123 EB 174 BD
124 E 175 U

125 ED 176 [3
126 0 177 E3
127 H 178 H
128 179 El
129 Orange 180 □

130 181

131 182

132 183 □
133 f1 184 H
134 f3 185 Q
135 f5 186 D
136 f7 187 H
137 f2 188 H

138 f4 189 El

139 f6 190 H
14018 191 B.
141 Sh- 192 B

RETURN

142 Uppercase193 [S]

143 194 Q]

144 Black 195 0

145 CRSR up 196

146 RVS off 197

147 CLR/

HOME

148 INST

149 Brown

150 Lt Red

151 Gray 1

152 Gray 2

198

216 B
217 Q]
218 H

219 BB
220 C
221 [D

222 0

223 H

224 SPACE

225 C

226 U
227 D

228 D
229 □

230 H
231 □
232 H
233

234

235 E
236 H

237 H

238 H
239 y

240 H

241 H

242 H
243 Bl

244 □

245 []

246 Q|

247 n

248 H

249 U

250 □

251 H
252(3

253 ED
254 E
255 0

332

APPENDIX K

SCREEN STORAGE DISPLAY CODES

When values are stored in addresses 1024-2023 ($400-$7E7) they

will appear as the characters in this chart. The first set is upper case

and full graphics (UQ, and the second set (UC/LQ is upper case

and lower case. If your keyboard is set to upper case and full

graphics, you will get the characters in the first set, and if it is set to

upper/lower case, you will get the second. Thus, any value that you

STA (or STX or STY) in these addresses will show up on the screen

as alphanumeric or graphic characters

UC UC/LC .# UC UC/LC # UC UC/LC # UC UC/LC # UC UC/LC

0 @ @ 51 3 3 102 B B 153 204

1 A a 52 4 4 103 Q Q 154 205

2 B b 53 5 5 104 Q Q 155 206

3 C c 54 6 6 105 B B 156 207
4D d 55 7 7 106 □□ 157 208
5E e 56 8 8 107 ffl CB 158 209
6F f 57 9 9 108 3 H 159 210
7G g 58: : 109 H C9 160 211
8H h 59; ; 110 ED ED 161 212
91 i 60 << 111 U U 162 213

10 J j 61 = = 112 H E3 163 214

333

UC UC/LC # UC UC/LC # UC UC/LC # UC UC/LC # UC UC/LC

11 K

12 L

13 M

14 N

15 O

16 P

17 Q

18 R

19 S

20 T

21 U

22

k

I

m

n

o

P

q

r

s

t

u

v

y

z

V

23 W w

24 X x

25 Y

26 Z

27

28

29

30

31

32 SPACE

33 ! !

34 " "

35 ##

36 $

37 %

38 &

39 '

4® (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 8

49 1

$

&

62

63

64

65

66 ED
67 B
68 B

71

72

73
74

► ► 113 g g

^ ? 114 H H
3 B 115 ED ED
±\ A 116 D D
H b 117 C C
3 c us a a

d 119 n n
_ E 120 H

70 D F 121 U
G 122 Q 0
H 123 H EJ

i 124 h a
.. = J 125 H ED
75 t-J K 126 E E
76 D L 127 H H
77 S M 128 - 255 reverse video of 0-127
78 0 N
79 DO
8© n p

D
D

58 2

1

2

81

82

83

84

85

86

87

88

89

98

91

92

93

94

95

96

97

98

99

188

181

m q

□ R
H s
D t
Q u
El v
O w
H x
GO y

B z

m m

E E
H B
n □
D D
G D

334

INDEX

This INDEX covers the major references to various key terms.

Many ofthe opcodes were used throughout the book in several pro

grams, but their only reference in the Index are to those places

where pertinent information was introduced or elaborated. Terms

in the Appendices are not in the Index but are located at the beginn

ing of the Appendices.

A-B

ABSOLUTE MODE 132-133, 184

ACCUMULATOR 104-105

ADC 186-189

ADDRESSING MODES 123

ANIMATION 230-237

APPEND 151-153, 280-290

ASC 211-215

ASCII 200, 237

ASSEMBLE SOURCE CODE 56

ASSEMBLERS 5, 21-26, 24

ASSEMBLER64 80-82

ASSEMBLY LANGUAGE 6-8

BASIC 10-15

BASIC LOGIC 167

BEQ 170, 177-181

BINARY NUMBERS 91-101

BNE 170, 177-181

BOOKS 291-293

BRANCH 166-167, 171, 177-181, 179

BREAK FLAG 107

.BYTE (directive) 211-215, 262, 269

BYTE 123-124

C-D

CARRY FLAG 108

CHANGE 63, 79, 285

CHROUT 127, 195-197, 199,

225-227, 238

CLC 187-189,226

CMP 169

335

COLOR 200-201, 222

COLOR CODES 19

COMMODORE 64 MACRO

ASSEMBLER 73-89

COPY 64-65

CPX 169

CPY 169

DEC 184

DECIMAL FLAG 107

DELETE 61 80

DEX 148-150

DEY 148-150

DFB 262, 264-265, 269

DISASSEMBLER 26

DOS WEDGE64 73,78

E-F

EDITORS 23-24

EDITOR64 73-80, 280

EOR 205-207

FIELDS 27-28

FIND 80

FLAGS 105-108

FORMAT 76, 89

G-H

GET 79

GETIN 127, 194-195

GRAPHICS 219-246

GROTKE-GUY 37, 138

HEADER 77

HEXADECIMAL NUMBERS

91-101

HIGH BYTE 35, 97, 121-123

HIGH NIBBLE 99

I-J

IMMEDIATE MODE 132-133

IMPLIED MODE 132-133

INC 184-186

INDEXED ABSOLUTE MODE

154-156

INDEXED INDIRECT MODE

157-160

INDEXED MODE 172-177, 185

INDIRECT INDEXED MODE

161-163

INSERT 60, 285

INTERRUPT FLAG 107

INX 148-150

INY 148-150

JMP 177-181

JOYSTICK 193, 203-211, 237-246, 285

JSR 126-128, 198-199

K-L

KERNAL 127

KEYBOARD 194-203

KIDS' ASSEMBLER 29-51

LABEL FIELD 27

LABELS 195

LDA 129-132

LINE NUMBERS 113-116

LIST 59

LOAD PROGRAM 36-38, 67, 79,

138-139

LOADERS 82-83

LOADERS AND SAVERS 25

LOADING PROGRAMS 48-50

LOOPS 166, 168-177, 178

LOW BYTE 35, 97, 121-123

LOW NIBBLE 99

LOW RESOLUTION GRAPHICS

220-228

M-N

MACHINE LANGUAGE 6-8

MAGAZINES 293-294

MEMORY 116-119, 126, 134-142

MERGING SUBROUTINES 280-290

MERLIN64 ADD MODE 56

MERLIN64 COMMAND MODE 55

MERLIN64 EDITOR 55, 59-66

MERLIN64 EXECUTIVE MODE 54

MERLIN64 53-72

MESSAGE MAKER 215-217

MNEMONIC 5

MONITOR 25-26, 70, 83-88, 119-121

MOVE 65, 285

NEGATIVE FLAG 106

NESTED LOOPS 175-177

NUMBER CONVERSION 91-101

O-P

OBJECT CODE 24

336

OPCODES 5, 22, 23, 30-31, 39-41,

47-48, 123-124, 289-290

OPCODE FIELD 44

OPERANDS 22, 23, 32

OPERAND FIELD 44

ORG 125-126

OVERFLOW FLAG 107

PEEK 11-12, 219, 247

PLOT 127, 225-229, 232, 237

POKE 16-17, 219, 247

PRG FILE 38, 37

PRINTER 62-63

PROCESSOR STATUS REGISTER

105-106

PROGRAM COUNTER 110

PUT 78

R-S

RAM 44

REGISTERS 103-111

RENUMBER 76-77

REPLACE 65-66

SAVE CODE 78

SAVE FILE 57, 86

SAVE GRAPHICS 228-229

SAVE OBJECT CODE 58-59

SAVE SOURCE CODE 57

SBC 186, 190-191

SCNKEY 127, 194-195

SCREEN ADDRESSES 140-141

SEC 187, 190-191

SEQ FILE 36

SEQUENTIAL STRUCTURE 165

SOFT SWITCHES 135-137

SOUND 274-278

SOUND REGISTERS 275

SOURCE CODE 23

SOURCEROR 68-69

SPRITE & SOUND 84, 281-282 84

SPRITE ASSEMBLER 265-267

SPRITE COLOR 254

SPRITE CREATION 251-256

SPRITE ENABLE 253-254

SPRITE EXPANSION 272-274

SPRITE MATRIX 248

SPRITE MOVEMENT 255-256, 272

SPRITE POINTERS 253

SPRITE STORAGE 252

SPRITES 247-274

STA 134, 150

STACK POINTER 108-110

STRUCTURE 165-181

STX 150

STY 150

SUBROUTINES 13-15, 126-128

SYS 25, 37, 46, 59, 193, 228

T-U

TAY146

TOKENS 12

TXA 146-148

TYA 146-148

TYPES OF ASSEMBLERS 8-9

USER GROUPS 290-291

x-z

X REGISTER 105, 143-163, 172, 223

Y REGISTER 105, 143-163, 172, 222

ZERO FLAG 107

ZERO PAGE 160

337

Like printing your own money...

SPECIAL 10% REBATE OFFER

Now that you have taken the first step toward learning how to program in

assembly language, why not do yourself a favor and get Merlin 64, the best

assembler available for the Commodore 64, and save a little money at the same
time!

Merlin 64 features includes nestable macros, assemble to disk, use of linked

source files, over 35 psuedo opcodes, handy crossreference utilities, a powerful

Editor, and a Monitor to move, compare, disassemble and dump blocks of

memory. Merlin 64 also includes Sourceror, an easy to use disassembler that

creates Merlin 64 source files for editing from binary programs.

And here's the best part. We are making you "an offer you can't refuse!"
That's right! We are offering to pay you to use Merlin 64. Merlin 64 will make

your assembly language programming a breeze, and put some cash back into
your pockets in the process.

And, just like Merlin 64, the rebate is easy to use. Just fill out and send in this
certificate to receive a "ONETIME ONLY" 10% (ten percent) REBATE of the
net purchase price (excluding state or local taxes) of Merlin 64.

Just send us your original, itemized sales receipt or invoice (as proof of pur

chase) and the completed Software Registration Form enclosed in each package

accompanied by this certificate and we'll write you a check!

Your receipt will be returned to you along with your rebate check. For your

protection, we recommend that you make a photocopy of the sales receipt prior
to mailing.

(Please print)

NAME: .

ADDRESS:.

CITY, STATE, ZIP:

PHONE:()

Net Purchase Price $ Rebate Amount Due $.

(Your Signature)

OUR GUARANTEE

Roger Wagner Publishing products carry the unconditional guarantee of satisfaction oir

your money back. Any product may be returned to place ofpurchase for complete refund

or replacement within thirty (30) days of purchase if accompanied by the sales receipt or
other proof of purchase.

Roger Wagner Publishing

P.O. Box 582, 10761-E Woodside Ave.

Santee, CA 92071

PH: (619) 562-3670

Rebate offer and prices as of 8/1/84, subject to change without notice.

= = KIDS' ASSEMBLER ON DISK= =

ONLY $10

If you don't feel like keying in the Kids' Assembler, you can get it

cheap from MICROCOMSCRIBE. There's nothing new on the

disk that's not in the book, except it's an inexpensive way to save

time keying in the assemblers, supporting programs and avoiding

typos you might make. The compiled version of the Kids'

Assembler runs a lot faster than the BASIC version.

Here's what you get:

KIDSASSEMBLER1

KIDSASSEMBLER2

KIDS ASSEMBLER-!-C (Cassette)

, KIDS ASSEMBLER2-M (Compiled-Disk only)

SOURCE READER-D (Disk)

SOURCE READER-C (Cassette)

CASSETTE LOADER (Cassette)

HEX-DEC CONVERTER

BINARY-DEC CONVERTER

Fill out the following coupon:

NAME

ADDRESS

CITY

STATE ZIP

Send coupon and $10 to:

MICROCOMSCRIBE

8982 STIMSON COURT

SAN DIEGO, CA 92129

(California residents add 6% sales tax. $10.60 total.)

ONLY disks will be mailed. If you have a cassette system, be sure you can bor

row a disk drive to download the programs to your tape. (Better yet, save the ten

bucks toward a purchase of a disk drive.)

USER GROUPS and EDUCATIONAL INSTITUTIONS will receive special

considerations. Write MICROCOMSCRIBE for details.

%%%%%% OFFER EXPIRES 12/31/86 %%%%%%%%

ASSEMBLY LANGUAGE

FOR KIDS

COMMODORE 64

by

WILLIAM B. SANDERS

LEARN ASSEMBLY LANGUAGE PROGRAMMING If you'd rather

be one of the kids who writes professional quality arcade games

than one who just plays them, learn machine/assembly language

programming,

WHAT COMPUTER? Everything in this book is for the Commo

dore 64. You'll get the right information for your computer; not

everyone else's.

WHO'S THIS BOOK FOR? If you know BASIC and want to learn

the fastest language in programming this book is for you. (If you're

an adult, fell them you got it for your nephew in Borneo.) This is an

elementary book for learning to use assemblers and assembly/

machine language programming on your Commodore 64.

WHICH ASSEMBLER? Three assemblers are fully covered, and

most others for the Commodore 64 are compatible with all pro

grams. Commodore's assembler. The Commodore 64 Macro

Assembler Development System, is clearly explained with lots of

examples. The Merlin assembler is clearly explained with lots of

examples. If you don't have an assembler, there's a simple-to-learn

and use listing of the Kids' Assembler written in BASIC for you free

in the book. The Kids' Assembler assembles programs for you,

and it will help you learn about assembly/machine language

programming.

WHAT YOU GET

- An Assembler and instructions on using the most popular Com

modore 64 assemblers.

- Charts covering everything from hexadecimal - decimal conver

sions to BASIC tokens to 651O opcodes.

- Step-by-step, clear explanations and clear examples of assembly

language programming,

- Practical utility programs in assembly/machine language you can

write yourself (and understand!).

- Amazing graphics, stupendous sprites, booming sounds, blinding

speed, fame, fortune and a heck of a lot of fun.

Written by, William B. Sanders, the author of the best-selling Ele

mentary Commodore 64; you will learn assembly language more

simply than you thought possible.

microcomscribe
rocomputer Documentation ISBN 0-931 1 45-00-7

