
8%

16
6
 $+2 x$ 12 21 Sx＋m $x+2$ R Writa $\mathrm{S}_{\mathrm{x}} \mathrm{x}$

便

便

[^0]

Gurnell dunurgity Tihrary Эfhata, Aveu 習ark

of Groningen
in Exchange

QB 883.B89 $\begin{gathered}\text { Cornell University Library }\end{gathered}$

Determination and discussion of the spec
$31924 \quad 012 \quad 323790$

Cornell University Library

> The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

DETERMINATION AND DISCUSSION OF THE SPECTRAL CLASSES OF 700 STARS MOSTLY NEAR THE NORTH POLE

PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE WIS- EN STERRENKUNDE AAN DE RIJKS-UNIVERSITEIT TE GRONINGEN, OP GEZAG VAN DEN RECTOR-MAGNIFICUS A. KLEIN, HOOGLEERAAR IN DE FACULTEIT DER GENEESKUNDE, TEGEN DE BEDENKINGEN VAN DE FACULTEIT DER WIS- EN NATUURKUNDE TE VERDEDIGEN OP DONDERDAG 24 JUNI DES NAM. TE 3 UUR

DOOR

GERRIT HENDRIK TEN BRUGGEN CATE, geboren te leeuwarden.

AAN MIJNE OUDERS

EN MIJNE VROUW.

Aan de Heeren Hoogleeraren in de Faculteit der Wis- en Natuurkunde aan de Universiteiten te Leiden en te Groningen betuig ik mijn hartelijken dank voor het genoten onderwijs.

In het bïzonder ben ik dank verschuldigd aan U. Hooggeleerde Kapteyn, Hooggeachte Promotor. Al heb ik niet het voorrecht gehad, Uwe lessen te volgen, Uwe geschriften en Uwe raadgevingen zijn mij een wegwijzer geweest tot samenstelling van dit proefschrift. 1k reken 't mij tot een eer dat Gij met groote bereidwilligheid het manuscript hebt willen doorlezen en van Uwe opmerkingen hebt willen voorzien.

Hooggeschatte Bonnema. Ik kan niet nalaten op deze plaats te vermelden de groote belangstelling die Gij voor mij gekoesterd hebt vanaf 't oogenblik, dat ik leerlingvan't Leeuzwarder Gymnasium werd. Uwe hooggewaardeerde lessen, die bij Uwe leerlingen de liefde voor de Natuurwetenschappen opwekten en die soozeer van invloed zijn geweest op de keuze van mijn studievak, zullen steeds bij mij in dankbare herinnering blijven.

Waarde van Rhijn. Wanneer dit geschrift éénige waarde heeft, dan zal dat zeker in niet geringe mate zijn te danken aan de wijze, waarop Gij mij steeds met raad en daad hebt terzijde gestaan. Wees overtuigd van mijn welgemeende gevoelens van blijvende erkentelijkheid.

TABLE OF CONTENTS.

Page
Introduction I
Chapter I. Classification of the spectra of stars 4
I. Description of the method 4
2. Probable error of spectral classification 7
3. The distribution of the spectra 9
4. Correction for observation error 10
Chapter II. The distribution of the spectra among stars of different magnitudes II
Chapter III. On the change of colour index with absolute and apparent magnitude 15
I. General outline of the method 15
2. Solution of b 16
3. Solution of c 20
4. Values of b and c 23
5. Discussion of the results 24
6. Summary of results 25
Explanation of the tables and plates 28
Tables 29
Plates 45

INTRODUCTION.

In the present paper I have collected the results of my attempts to classify the spectra of a 700 stars, photographed by Dr. F. Zernike (formerly assistant of the Laboratory at Groningen) with the 6 -inch refractor at Potsdam in the year 1914. He has chosen five regions, the centres of which are given further on in table 2.

Each side of a plate is 20 cM ., and the focallength of the instrument being $1494 \mathrm{mM} ., 1 \mathrm{mM}$. corresponds with $2^{\prime} .30$, so that the plate contains an area of $460^{\prime} \times 460^{\prime}=59.29$ square degrees.

All the plates together cover a region of 192 square degrees with 700 stars, so that there are on the average 3.6 stars per square degree. Consequently our list contains, according to the Publications of the Astronomical Laboratory at Groningen No. 27, the stars to about 9,5 photographic magnitude of the Harvard scale (Harvard Annals 7:). The reason why Dr. Zernike has taken the regions in the neighbourhood of the pole is, that all the stars of his plates are to be found in the Astrographic catalogue 1900 Greenwich section, Volume III.

Further he has taken the plate at Declination $+35^{\circ}$, because, as appears from the General eatalogue in the $\left.G . P 19(\text { Area } I X)^{1}\right)$ this are a contains many stars with great proper motion. Unfortunately the two plates with spectra of large dispersion contain but four stars out of the above-said catalogue, because the spectra on the plate do not go beyond the 8 m .5 (Bonner Durchmusterung). The classification of the spectra of the third plate (small dispersion) is impossible. It has been much overexposed It may suffice to give a list of these spectra without discussing the material. It is contained in the list at the end of the paper which gives the whole of our results. In every zone the stars are arranged in the order of increasing Right-Ascension. The second and third columns give the places of the stars from the above mentioned Astrographic catalogue. The fifth column (phot. magn.) is also taken from this catalogue applying a correction of $+o^{m} . \mathrm{I}$, because the magnitudes of this catalogue are based on the scale of Pickerings North Polar

[^1]sequence (Harvard circular ${ }^{170}$) and they must be reduced to the scale of $H . A$. 71, part 3. In G. P. 27, table 11, I find
$$
\text { H. A. } 71-\mathrm{H} . \mathrm{C} \cdot 170=+\mathrm{om}^{\mathrm{m}} 1
$$
for stars between $5^{\mathrm{m}} \cdot 5$ and $1^{\mathrm{m}} \cdot 5$.
The sixth column contains the visual magnitudes. They have been determined by Messrs. Muller and Kron at Potsdam on the Potsdam-scale. They are still unpublished, but have been courteously communicated by the authors.

I have compared these magnitudes with those of $H . A .70$ and 54 . The result, derived from a great number of stars, is:

Table 1.

$$
\begin{array}{lcccc}
\text { magn. } & <8.0 & 8.0-89 & 9.0-9.9 & >9.9 \\
\text { Harvard_Potsdam } & -0.1 & -0.2 & -0.3 & -0.4
\end{array}
$$

The seventh column gives the colour-Index, i. e. phot. magn. H. A. 71 vis. magn. Potsdam.

The three following columns contain the spectra of the stars; next to those, determined by the author of this paper, the spectra taken from H.C. i80 and Yerkes Actinometry are shown. The spectrum of many stars has been determined on different plates. If that was the the case I have taken the mean of all the determinations, the results of which are found in the eighth column.

In the last column the reader will find the total proper motion. I have found $\mu_{a} \cos \delta$ and μ_{δ} in a manuscript, kindly communicated by the Astronomer Royal at Greenwich.

In Chapter II and III I have given due attention to the two phenomena mentioned by Professor Kapteyn ${ }^{1}$):

1) On the average the apparently fainter stars are redder than the brighter ones.
2) Apparent magnitude and spectral lines being the same, the stars are on the average redder the farther away they are.

For the phenomenon (r) Professor Kapteyn gives the three following possible explanations:
3) Predominance of the later spectral types among the fainter stars.
4) An influence of the absolute brightness on the color index.
5) Selective absorption of light in space.

For the phenomenon (2) there are only the two explanations (4) and (5)

[^2]Therefore the complete equation for the colour index for stars of determined spectrum is:

$$
\text { C. I. }=a+b m+c \mathrm{M}+d \mathrm{R}
$$

where a, b, c and d are constants, m the apparent magnitude, M the absolute magnitude and R the distance.

I think we can take d to be practically zero, mainly because Shapley has found white stars in the globular clusters.

We thus drop the explanation (5).
The data we need are:

1) The photographic and visual magnitude i. e. the colour;
2) The spectral type;
3) The parallax of certain groups of stars.

The parallax is required for the determination of M and is found in $G . P$. No. 8^{1}).

To solve b in the equation

$$
\text { C. I. }=a+b m+c \mathrm{M}
$$

we must take groups of stars with the same M, but with different m, and to solve c, we take groups of stars with the same m, but with different M.
${ }^{1}$) Mean parallax of stars of determined proper motion and magnitude.

CHAPTER I.

CLASSIFICATION OF THE SPECTRA OF STARS.

r. Description of the method.

In this chapter I will describe the method and give the results of a spectral classification, depending on the relative intensities of some spectral lines. As was said in the introduction the determined spectra were photographed by, Dr. Zernike. He has used two kinds of objective prisms: one with small dispersion (the spectra got in this manner I will call P_{1} and the other with large dispersion P_{2}).

In both cases the spectrum extends from $\mathrm{H}_{\gamma}(\lambda=4341)$ to $\mathrm{H}_{\kappa}(3750)$ in the early types and from, the G -band to K (3934) in the later types.

The distance from H_{γ} to K is for $\mathrm{P}_{1}=0.8 \mathrm{mM}$, and for $\mathrm{P}_{2}=3.7 \mathrm{mM}$.
According to the ,,Publications of the Astronomical Laboratory at Groningen No. 27 " we can compute the photographic magnitude to which the determined spectra extend.

In the following table are given the results for all the plates.
Table 2.

Centre of the Plate.	Galactic latitude ${ }^{1}$).	Dispersion.		Number of Plates.	Number of stars.	Number per square degree.	Intern. phot. lim. magn.
Pole	27°	Pr	$1^{\text {l }}$	1	135	2.3	9.2
Pole	27°	P2	$2^{\text {h }}$	1	89	1.5	8.8
$85^{\circ} 6^{\text {h }} 30^{\mathrm{m}}$	27°	Pi	$\mathrm{I}^{\text {h }}$	3	220	3.7	9.6
$85^{\circ} 6^{\text {b }} 30^{\mathrm{m}}$	27°	P2	$2^{\text {h }}$	3	80	1.3	8.6
$84^{\circ} 12^{\mathrm{h}} 30^{\mathrm{m}}$	33°	Pr	$1^{\text {h }}$	2	120	2.0	9.2
$84^{\circ} 12^{\mathrm{h}} 30^{\mathrm{m}}$	33°	P 2	$2^{\text {h }}$	2	46	0.8	8.2
$84^{\circ} 2 \mathrm{I}^{\mathrm{h}} 30^{\mathrm{m}}$	33°	Pr	$\mathrm{I}^{\text {b }}$	2	200	3.4	9.6
$84^{\circ} 2 \mathrm{I}^{\mathrm{hl}} 3 \mathrm{O}^{\mathrm{m}}$	33°	P_{2}	$2^{\text {h }}$	3	90	1.5	8.9
$35^{\circ} 14^{\mathrm{h}} 35^{\mathrm{m}}$	70°	P 2	$2^{\text {h }}$	2	46	0.8	8.7

[^3]As was already mentioned, there is one plate P1 (exposure 2 hours) for which the determination of the spectra is impossible.

As for the last column of table 2, attention must be paid to the fact, that the plates contain many stars between $9^{\mathrm{m} .6}$ and $10^{\mathrm{m}} .5$. Of course, the lim magn. is not quite the same for the several spectral classes.

Method of classification. In the spectrum of a star pairs of lines were selected not far from one another and their relative intensities were estimated. For P_{1} two pairs of lines were selected, for P_{2} three. I have constructed a normal curve for each pair, the abscissa of each point representing the spectrum, the ordinate the relative intensities.

I have adopted the Harvard-scale of classification ${ }^{1}$). Each of the classes A, F, G and K is subdivided into 10 subdivisions Ao, $A_{1}, A_{2} \ldots A_{9}$, Fo etc.

The subdivisions $\mathrm{M} a$ and $\mathrm{M} b$ were dropped. I have written down M at the appearance of flutings (due to titanium-oxyde) and a great intensity of the line $\lambda=4227$.

As for the B stars I could only estimate B8 and B9 by the aid of the chosen lines; only a few stars contained helium-lines ($\lambda=4010$ and $\lambda=4026$).

With the available spectra this is about all that proved to be feasible.
The estimates were made on an arbitrary scale, extending from 0 to 10 , in the same way as is done in the Stufenmethode of Argelander for the estimates of variable stars. Hence, my numbers are approximately proportional to the logarithms of the intensity differences of two lines. I have noted 0 , when there was no difference between the lines, I at the smallest difference in intensities that could be discovered, 10 when one of the lines was only just visible.

I have used the following pairs of lines (H is the compound line H and H_{6}):

$$
P_{2}: \frac{\mathrm{H}_{\delta}}{\mathrm{K}}, \frac{\mathrm{H}}{\mathrm{~K}} \text { and } \frac{\mathrm{H}}{\mathrm{H}_{\delta}} .
$$

In the first two cases a line decreasing in intensity with advancing type (H_{δ} and H) has been combined with a line increasing in intensity with advancing type. $\frac{\mathrm{H}_{\delta}}{\mathrm{K}}$ en $\frac{\mathrm{H}}{\mathrm{K}}$ give a descending curve, $\frac{\mathrm{H}}{\mathrm{H}_{\delta}}$ an ascending curve (see the figures at the end of the paper).
$P_{I}: \frac{\mathrm{H}}{\mathrm{K}}$ and $\frac{\mathrm{H}}{\mathrm{H}_{6}}$. The first gives a descending, the second an ascending curve. I have constructed the curves in the following way:

[^4]On one of the best plates $\left(\mathrm{P}_{2}\right)$ I have chosen the finest spectra and then determined the intensity-differences of each pair of lines. These I have compared with the spectral classes given in $H . C$. 180 . In this manner I obtained many points, which determined the curve. In the same way I did with Pr.

From F_{2} to K_{5} there is in reality no important change in the ratio $\frac{\mathrm{H}}{\mathrm{K}}$, as may be seen in the same curve for P_{2} and in H. A. 28, part II. Notwithstanding this the ordinate in my curve for P_{I} shows a regular decrease for the same interval.

A possible explanation is, that owing to the smaller dispersion, several lines, variable with the spectrum, well separated in the P_{2} plates, have coalesced.

I regret that as yet I have found no occasion to investigate the phenomenon more closely.

The K-line has the appearance of a large ,,band". I think there will be no objection against calling this band K .

That there is no doubt, that the curve is useful, is obvious in the average difference (paying no attention to the sign) between my estimates and those of Harvard or Yerkes Actinometry (of course made on the spectra from F_{2} to K_{5}). This average difference is 0.4 spectral class. I find an average difference of 0.3 class between all my estimated spectra and Harvard or Yerkes.

I have therefore no reason to suppose that the curve $\frac{H}{K}\left(P_{1}\right)$ below F_{2} is not real. It is however a very curious phenomenon.

In order to show that my scale of classification is identical with the Harvardscale, I give here a list, taken from H. A. 28, Part I, containing the intensities of the lines used in the present paper

Table 3.
Intensities (Cannon).

Spectral class.	B 8	Ao	F_{5}	Go	Ko	Ma
H_{5}	65	62.5	16	8		
K	5	10	135	160	200	170
$\mathrm{H}+\mathrm{H}_{\varepsilon}$	70	70	100	120	170	140
$\mathrm{H} \delta$	65	62.5	16	10	6	4

If I suppose the light-ratio between two lines, for an intensity difference of one grade to be x and if we call m_{1} and m_{2} the intensities of these lines expressed in magnitudes, then we have according to my curves and the preceding table:

Table 4.

$$
\mathrm{P}_{2} \text { for } \frac{\mathrm{H}_{\delta}}{\mathrm{K}}: x^{6}=6.25 \text { (Ao) therefore } \log x=0.13
$$

$$
x^{8}=8.44\left(\mathrm{~F}_{5}\right) \quad, \quad \log x=0.11
$$

$$
x^{9}=16.00(\mathrm{Go}) \quad, \quad \log x=0.13
$$

$$
x^{10}=13.00(\mathrm{~B} 8) \quad, \quad \log x=0.1 \mathrm{I}
$$

$$
\frac{\mathrm{H}}{\mathrm{~K}}: x^{7}=7.00(\mathrm{Ao}) \quad, \quad \log x=0.12
$$

$$
\frac{\mathrm{H}}{\mathrm{H}_{\delta}}: x^{7}=6.25\left(\mathrm{~F}_{5}\right) \quad, \quad \log x=0.11
$$

$$
x^{9}=12.00(\mathrm{Go}) \quad,, \quad \log x=0.12
$$

$$
\text { mean } \log x=0.12
$$

Therefore

$$
0.12=0.4\left(m_{2}-m_{1}\right)
$$

$$
m_{2}-m_{1}=0.3
$$

PI for $\frac{\mathrm{H}}{\mathrm{K}}: x^{10}=7.00$ (Ao) therefore $\log x=0.08$

$$
\begin{array}{rll}
x^{2}=1.35\left(\mathrm{~F}_{5}\right) & & \quad \log x=0.07 \\
\frac{\mathrm{H}}{\mathrm{H}_{5}}: x^{10}=6.25\left(\mathrm{~F}_{5}\right) & & " \quad \log x=0.08 \\
& & \text { mean } \log x=0.08
\end{array}
$$

Therefore

$$
\begin{aligned}
& 0.08=0.4\left(m_{2}-m_{1}\right) \\
& m_{2}-m_{1}=0.2
\end{aligned}
$$

By comparison with $H . C .180$ I find the following systematic difference:
H. C. $180-$ ten Bruggencate $=+0.14$ class.
2. Probable error of spectral classification.

From one of the plates (P_{1}) I have taken the differences A between two estimates $\left(\frac{\mathrm{H}}{\mathrm{K}}\right.$ and $\left.\frac{\mathrm{H}}{\mathrm{H}_{\zeta}}\right)$ made on the same star, expressed in one subdivision as unit. I find:

Table 5.

Δ	observed number	computed number
O	20) 6 (26	10 17
2 3	$\left.\begin{array}{l}10 \\ 10\end{array}\right\} 20$	$\left.\begin{array}{c}14 \\ 8\end{array}\right\} 22$
4 5	$\left.\begin{array}{c}10 \\ 1\end{array}\right\} 11$	$\left.\begin{array}{l} 5 \\ 2 \end{array}\right\} 7$
6	0	1
	57	57

Accepting the error curve we get:
p. e. of a difference $=1.50$.
p. e. of one estimate $=1.06$.
p, e. of mean of 2 estimates $=0.75$.
For the modulus h of the error curve we find the value 0.30
As far as can be judged from so small of number of observations the distribution agrees tolerably with the distribution of accidental errors.

The last column shows the distribution in the supposition that the number of differences $\mathcal{1}=0$ is equal to the number between -0.5 and +0.5 , that the number of differences $\Delta=1$ is equal to the sum of the number between - 1.5 and -05 and between +0.5 and +1.5 and so on.

I have treated exactly in the same manner a second plate (P_{1}) Here I find for the p. e. of the mean of 2 estimates the value ± 0.53 and for the number of differences:

Table 6.

Δ	observed number	computed number
0 1 2 3 4 5	$\left.\left.\begin{array}{r} 31 \\ 9 \\ 98 \\ 4 \\ 1 \\ 1 \\ 5 \\ \frac{58}{68} \end{array}\right\} \begin{array}{l} 40 \\ \end{array}\right\}$	$\left.\begin{array}{c} 14 \\ 24 \\ 17 \\ 8 \\ \frac{4}{4} \\ \frac{1}{68} \end{array}\right\} 25$

The irregularities in the numbers of the tables 5 and 6 must be the consequence of my preference for estimating the spectrum rather in one division than in another one. Therefore some divisions will extend over a larger interval than one tenth of a spectral class, whereas others will cover less than a tenth.

Taking two consecutive intervals the theoretical and observed numbers agree tolerably well.

For the greater dispersion plates $\left(\mathrm{P}_{2}\right)$ the results are still better. I find for one of the plates for the p. e. of the mean of 2 estimates the value ± 0.38 and for the number of differences Δ :

Table 7.

Δ	observed number	computed number
0 1	$\left.\begin{array}{l}31 \\ 12\end{array}\right\} 43$	$16{ }_{24}{ }^{1} 40$
2	8 $\left.{ }_{4}\right\}^{15}$	13 4 ¢ $\}^{17}$
4	3	1
	58	58

Furtheron an average value of the probable error will be required. As even a very rough estimate will be sufficient for our purpose I assumed as the p. e. of a spectrum on a simple plate the value

$$
\text { p. e. }= \pm 0.55 \text { subdivision. }
$$

This result represents the mean accuracy of our measures. The accuracy however differs pretty considerably for the several spectral classes. In general; the determination of an A star was easier than of a $F-M$ star.

3. The distribution of the spectra.

As was to be expected from the irregularities in the numbers (Tables 5, 6 and 7), we find irregularities in the observed numbers as is shown by the following table:

Table 8.

Spectrum	Number of stars						
AFGKKM	$\begin{aligned} & 19 \\ & 24 \\ & 27 \\ & 39 \\ & 14 \end{aligned}$	$\begin{gathered} \mathrm{B} 8 \text { and } \mathrm{B9} 9 \\ \text { Ao } \\ \mathrm{AI}_{1} \\ \mathrm{~A}_{2} \\ \mathrm{~A}_{3} \\ \mathrm{~A}_{4} \\ \mathrm{~A}_{5} \\ \mathrm{~A} 6 \\ \mathrm{~A}_{7} \\ \mathrm{~A} 8 \\ \mathrm{~A}_{9} \\ \mathrm{Fo}_{1} \\ \mathrm{FI}_{1} \\ \mathrm{~F}_{2} \end{gathered}$	20	F3	15	G7	2
			69	F4	8	G8	5
			20	F5	25	G9	-
			42	F6	7	Ko	39
			30	F7	4	Kı	-
			17	F8	19	K2	o
			25	F9	3	K3	I
			17	Go	26	K4	-
			8	GI	2	K5	6
			9	- G2	3	K6	-
			4	G3	23	K_{7}	-
			26	${ }^{1} \quad \mathrm{G}_{4}$.	3	K 8	\bigcirc
			52.	G_{5}	17	K9.	0.
			12	G6	5		

In the first column I have brought together the stars, for which the subdivision of the spectrum was not to be determined. When I take together all stars of each class, I find:

Table 9

$$
\begin{array}{cccc}
\text { Number of A-stars: } & 260 \\
" & " & \text { F- } & \text { " } \\
195 \\
" & " & \text { G- } & 1, \\
\hline " & " & \text { K- } & 11 \\
" & 89 \\
\text { " } & \text { M- ", } & 14 .
\end{array}
$$

A somewhat similar behaviour is shown by the stars in the Yerkes Actinometry. In other catalogues, where the magnitudes are visual, the K -stars are found in much greater number than the F. and G stars.

Probably the apparent contradiction must be explained by the fact, that, as we have admitted all measurable spectra, the limit in visual magnitude for the K-stars is not nearly so faint as that for the F - and G-stars.

4. Correction for observation error.

Supposing the deviations of the true spectrum X are distributed according to the law of errors, we can compute which fraction of the observed number of X really belongs to this subdivision, and which fraction belongs to $\mathrm{X} \pm 1, \mathrm{X} \pm 2$ etc. We are not far from the truth in assuming for the p. e. r of an estimated spectrum the value ± 0.55 (see page 9).

Table 10.
Mixture of spectral classes in what has been observed as spectrum $\mathrm{X}(r= \pm 0.55)$.

Spectrum	Fraction
X	0.457
$\mathrm{X} \pm 1$	0.238
$\mathrm{X} \pm 2$	0.032
$\mathrm{X} \pm 3$	0.001

The meaning of this table is, that of the stars observed as belonging, say, to A_{5}, the fraction 0.457 belongs really to this class, the fraction 0.238 belongs to A4 and another equal fraction to A6. Similarly the fraction 0.032 belongs to A_{3} and another equal fraction to A_{7}.

CHAPTER II.

THE DISTRIBUTION OF THE SPECTRA AMONG STARS OF DIFFERENT MAGNITUDES.

It is of course important to examine whether the proportion of the stars of the first and the second type varies with apparent magnitude. Especially the question arises whether the later type stars predominate among the fainter ones.

It appears that, comparing bright and faint stars of the same spectrum and absolute magnitude, the average colour index of the faint stars is different from that of the brighter ones, a phenomenon, which must be due to an error in the photographic or the visual scale. Consequently, an investigation of the relative frequency of the several spectral classes among the stars of the fainter magnitudes is necessary.

As a small contribution to such an investigation I have examined the stars of the end of the paper and some other sources. The difficulty is, to determine to which magnitude the stars of the different regions are complete. I have used two methods in order to investigate this point.

In the first place I have determined the proportions of the number of stars between fixed limits of photographic magnitudes, both from G. P. 27 and from my list.

For the stars from my list I find, denoting $N_{7.8}^{8.2}$ the number of stars from magnitude 7.8 to magnitude 8.2 and so on:

Table 1 .

$\mathrm{N}_{8.3}^{8.7}$	$\mathrm{N}_{8.5}^{8.9}$	$\mathrm{N}_{8.7}^{9.1}$	N $\begin{array}{r}9.3 \\ 8.9\end{array}$
$\frac{8.3}{8.2}=1.55$	$\frac{.8}{8.4}=1.73$	$-8.6=1.98$	$\frac{8.9}{8.8}=\mathrm{r} .80$
$\mathrm{N}_{7.8}^{8.2}$	$\mathrm{N}_{8.0}^{8.4}$	$\mathrm{N}_{8.2}$	$\mathrm{N}_{8.4}^{8.8}$
	${ }^{\mathrm{N}_{8.6}^{9.0}}=1.75$	$\stackrel{\mathrm{N}_{8.8}^{9.2}}{ }=1.90$	$\stackrel{\mathrm{N}}{ } \begin{array}{r}9.4 \\ \mathrm{g.0} \\ \hline 8.0\end{array}=\mathrm{I} .53$
$\frac{\mathrm{N}_{7.9}^{8.3}}{}=\mathbf{1 . 5 5}$	$\overline{\mathrm{N}_{8.1}^{8.5}} \overline{8}=1.75$	$\mathrm{N}_{8.3}^{8.7}=1.90$	$\mathrm{N}_{8.5}^{8.9}=1.53$

For all the quotients I find in G. P. 27 the value 1.74 .
From $\frac{\mathrm{N}_{8.7}^{9.1}}{\mathrm{~N}_{8.2}^{8.6}}$ to $\frac{\mathrm{N}_{8.8}^{9.2}}{\mathrm{~N}_{8.3}^{8.7}}$ there is a decrease. Therefore I assume that my list is complete up to and including magnitude 9.1.

In the second place I have determined the number of stars included in the Astrographic catalogue 19co, Greenwich section, volume III, and missing in my list. For the zones 80 to 88 , the result is as follows:

Table 12.

Magnitudes (phot.)	Total number of stars (in the Greenwich catalogue)	Number of stars, missing in my list
$6.0-6.9$	28	3
$7.0-7.4$	24	1
$7.5-7.9$	35	3
80	8	0
81	13	1
8.2	13	0
8.3	15	0
8.4	12	1
8.5	20	3
8.6	17	2
8.7	24	1
8.8	22	2
8.9	26	3
9.0	34	3
9.1	32	2
9.2	35	8
9.3	55	21
9.4	45	23

That there is a certain number of brighter stars missing need no surprise. There are stars for which I found it impossible to assign the spectral class .

The Greenwich catalogue is complete up to photographic magnitude 9.0 for the B stars

| $"$ | $"$ | 9.2 | $"$ | A stars |
| :--- | :--- | ---: | :--- | :--- | :--- |
| $"$ | $"$ | 10.2 | $"$ | ,$"$ K stars. |

I conclude that we may consider my list to be complete up to and including magnitude 9.r.

I have included in my examination not only the spectra from my list but also from Harvard Circular 180 in which the spectra are complete to 8 m .2 (photogr.).

In $H . C .180$ and in my list there are but few stars brighter than the seventh magnitude. Therefore I have completed my results with those from Harvard Annals Volume L (Revised Harvard photometry) and with the results, kindly sent to me by Dr. van Rhijn of the Boss-stars, the spectra of which are taken from H. A. 28, 56 and - in some cases - 50 .

Harvard Annals 50 contains all the stars of visual magnitude 6 m .5 and brighter, therefore photographically up to different magnitudes, depending on the spectrum in accordance with the values of the colourindices in the following table:

Thus: The B-stars from H. A. 50 extend to photogr. magn. 6.5

$"$	A- ",	$"$	$"$	$"$	$"$	$"$	$"$
6.7							
$"$	F- ",	$"$	$"$	$"$	$"$	$"$	$"$
7.0							
$"$	G- ",	$"$	$"$	$"$	$"$	$"$	$"$
	K- ".	$"$	$"$	$"$	$"$	$"$	$"$
$"$	M. ",	$"$	$"$	$"$	$"$	$"$	$"$

We must therefore diminish the number of A-stars with the number lying between $6^{\mathrm{m}} .7$ and $6^{\mathrm{m}} .4$. According to G. P. 27, page 60 , the proportion $\frac{\text { Number of stars from } B \text { to } 6^{\mathrm{m}} \cdot 50}{\text { Number of stars from } B \text { to } 6^{\mathrm{m}} \cdot 70}$ is equal to $\frac{126}{159}$.

Now in H. A, 50 there are 2973 A-stars down to 6 m .7 (phothogr.). Therefore the number of A-stars down to 6 m .5 (photogr.) $=\frac{126}{159} \times 2973=2360$.

In the same manner I have computed the number of F, G, K and M-stars, down to $6^{\mathrm{m}} .5$ (photogr.). The number of B-stars remains the same.

Table 13.

Spectrum	Number in H. A. 50	Number to $6^{\mathrm{m}} .5$ (photogr.)
B	865	865
A	2973	2360
F	117 I	674
G	973	353
K	2327	546
M	396	74

The final results are:

Table 14

Relative frequency of the several stectral classes among the stars of different photographic magnitudes.

Region	$\begin{gathered} \text { Galactic latitude } \\ -20^{\circ} \text { to }-40^{\circ} \text { and } \\ +20^{\circ} \text { to }+40^{\circ} \end{gathered}$		Whole sky	Circumpolar stars within 10° from the North Pole (Galactic latitude $+25^{\circ}$ to $+35^{\circ}$)		
Catalogue	Boss		H. A. 50	H. C. 180 and Author		Author
Photogr. magn.	<3.50	3.50-5.49	<6.5	$5.1-7.0$	7.1-8.0	8.1-9.1
	Fraction	Fraction	Fraction	Fraction	Fraction	Fraction
Spectrum B	0.39	0.30	0.18	0.06	0.06	0.01
A	0.32	0.37	0.49	0. 54	0.32	0.32
F	0.11	0.12	0.14	0.17	0.25	0.30
G	0.00	0.07	0.07	0.06	0.21	0.21
K	0.18	0.11	0.11	0.17	0.15	0.15
M	0.00	0.02	0.02	0.01	0.01	0.01
Total Number of stars	28	380	4872	71	143	221

From this table we draw the following conclusions:
The number of B -stars decreases with decreasing brightness.
The number of A-stars increases down to $7^{\mathrm{m} . o}$ but for fainter stars there is a strong decrease.

The number of F stars increases with decreasing brightness.
The number of G -stars is constant down to $7^{\mathrm{m}} . \mathrm{o}$, but then there is a large increase.
The number of K - and M -stars seems to remain rather constant down to $9^{\mathrm{m} . \mathrm{I}}$.
The following table gives the relative numbers of the first (B and A) and second type (F, G and K) stars.

Table ${ }^{5} 5$.

Photogr. magn.	<3.50	$3.50-5.49$	<6.5	$5.1-7.0$	$7.1-8.0$	$8.1-9.1$
Type I	2.50	2.27	2.05	1.50	0.62	0.49

Conclusion: The quotient $\frac{\text { Type I }}{\text { Type II }}$ decreases with decreasing brightness.

CHAPTER III.

ON THE CHANGE OF COLOUR INDEX WITH ABSOLUTE AND APPARENT MAGNITUDE.

1. General outline of the method.

As is stated in the introduction, we must solve the equation

$$
\text { C. I. }=a+b m+c \mathrm{M}
$$

in order to investigate the change of C. I with absolute magnitude, spectral type being the same. Owing to the scale error, treated above, the C. I. will also depend on the apparent magnitude; without this error b would be zero. The all important question however is the determination of c, i. e. the increase of the C. I per unit of absolute magnitude.

The unknowns b and c have been solved in two steps:
In the first place I divided the stars of every spectral division into two or three groups according to their apparent magnitude. Every group gives an equation of the form:

$$
\overline{\text { C. I. }}=a+b \bar{m}+c \overline{\mathrm{M}}
$$

where a dash over a letter denotes the mean of the quantities, defined by those letters for the stars of a group.

From these equations we find

$$
b=p+q c .
$$

The coefficients p and q may be computed rom our data; q will be small, if the mean absolute magnitudes of the different groups are approximately equal.

In the second place I divided the stars of every spectral division into groups according to their absolute magnitude. I thus found c as a function of b :

$$
c=r+s b,
$$

where s will be probably a small quantity. For every spectral division the unknowns b and c are solved from the two equations

$$
\begin{aligned}
& b=p+q c \\
& c=r+s b .
\end{aligned}
$$

For the solution of the above-mentioned equations I have used the stars from my lists at the end of this paper and the stars from Harvard Circular 180 . As was said in the Introduction, the visual magnitudes are determined by Messrs. Kron and Muller at Potsdam.

The absolute magnitude M, i. e. the apparent magnitude at the distance of one parsec ($\pi=1^{\prime \prime}$), is a function of the apparent magnitude and distance; they are connected by the relation

$$
\mathrm{M}=m+5 \log \pi
$$

I have calculated for every star the absolute magnitude by means of the formula

$$
\left.\mathrm{M}=m+5 \log \bar{\pi}-{\frac{5 \varrho^{2}}{0.92 \bmod .}}^{1}\right)
$$

where $\bar{\pi}=$ mean parallax of stars of determined proper motion and magnitude and $\varrho=$ probable error of the error curve

$$
z=\log \frac{\pi}{\pi_{0}}
$$

π being the true parallax of a star and π_{0} the most probable parallax of stars of the same magnitude and proper motion ${ }^{2}$).

We can find $\bar{\pi}$ in Table G in the $G . P$. 8. The photometric magnitudes in this Table are based on the Potsdam scale. Adopting the scale of Muller and Kron, we have to diminish the visual magnitudes in my lists by an amount of $\mathrm{o}^{\mathrm{m} .1}{ }^{3}$), in order to compute $\bar{\pi}$.

According to G. P. 8 the value of ρ is equal to 0.19 ; therefore

$$
\frac{5 e^{2}}{0.92 \bmod .}=0.46
$$

2. Solution of 6 .

As some of the spectral divisions do not contain a sufficient number of stars to give a reliable result for the unknowns, the stars of these divisions were

[^5]combined with those of other divisions into a single group. This was done, for instance, for the A9 and A8 stars. The colour-indices of the A 9 stars were diminished by $0^{m} .04$, i. e. the average difference between the mean colour-indices of two successive spectral divisions. Moreover the absolute magnitudes of the A9stars were diminished by $o^{\mathrm{m}} .10$, a value derived from a smooth curve, which was drawn through the plotted points, representing the mean absolute magnitude as a function of the spectral type. It must be noted, that this curve has a maximum at F_{5}.

In the same way the quantities of the A_{7}-stars, changing systematically with the spectral type have been reduced to what they would have been, had the stars been of the A8 type.

The following table gives the spectral divisions which were combined into a single group:

Table r 6.

Spectral divisions combined into a single group	C. I. en M. reduced to:	Number of stars.
B8 and B9	B9	16
Ao	Ao	76
Ai	AI	19
A2	A2	57
A_{3}	A_{3}	36
A_{4}	A_{4}	16
A_{5}	A_{5}	36
A6	A6	14
A7, A8 and A9	A8	20
Fo	Fo	39
Fr	Fi	46
F2	F2	20
F_{3} and F_{4}	F3	20
F_{5} and 6	F5	49
F7. F8 and F9	F8	51
Go, Gi and G2	Go	45
G_{3} and G_{4}	G3	24
G5. G6, G7 en G8	G5	60
Ko	Ko	78
K2, K_{3} and K 5	K 5	23
M	M	13

There are no stars belonging to $\mathrm{G}_{9}, \mathrm{~K}_{\mathrm{I}}, \mathrm{K}_{4}, \mathrm{~K} 6$ to K_{9}. We first divide the stars of a certain group into two or three subgroups, according to their apparent magnitude The stars with a very large or a very small absolute magnitude were omitted, in order to make the mean absolute magnitudes of the subgroups of stars of different apparent magnitude as equal as possible.

Every sub-group gives an equation of condition, which was written in the form

$$
a+b(m-9.00)=\text { C. I. }-c(\mathrm{M}+3.00)
$$

The resulting equations of condition of this form are given in :

Table 17.

Spectrum	Limits of magnitude	Equations of condition for the unknown b	Number of stars
B	$\leqq 8.9$	$a-1.89 b=-0.39+1.26 c$	7
	$\geqq 9.0$	$a+0.79 b=-0.33+0.21 c$	9
Ao	$\leqq 8.9$	$a-1.418=-0.32+0.75 c$	26
	9.0 to 9.9	$a+0.44 b=-0.25+0.36 c$	26
	$\geqq 10.0$	$a+1.96 b=-0.35+0.08 c$	16
AI	$\leqq 8.9$	$a-1.73 b=-0.14+0.85 c$	8
	$\geqslant 9.0$	$a+0.58 b=-0.34+0.36 c$	II
A2	$\leqq 8.9$	$a-1.115 b=-0.19+0.72 c$	27
	$\geqslant 9.0$	$a+0.74 b=-0.38+0.24 c$	24
A3	$\leqq 8.9$	$a-0.92 b=-0.20+0.44 c$	12
	9.0 to 9.9	$a+0.36 b=-0.15+0.17 c$	10
	$\geqq 10.0$	$a+\mathrm{r} .29 b=-0.17-0.29 c$	7
A4	$\leqq 8.9$	$a-1.28 b=-0.12+0.53 c$	5
	$\geqq 9.0$	$a+0.64 b=-0.38+0.10 c$	9
A5	$\leqq 8.9$	$a-0.612=-0.17-0.32 c$	13
	$\geqslant 9.0$	$a+0.52 b=-0.21-0.39 c$	18
A6	$\leqq 9.5$	$a-0.27 b=-0.08-0.66 c$	6
	$\geqq 9.6$	$a+\mathrm{I} .05 b=-0.18-0.72 c$	8
A8	$\leqq 9.5$	$a-0.49 b=-0.09-0.23 c$	8
	$\geqq 9.6$	$a+0.87 b=-0.20-0.77 c$	6

Table 17 (continued).

Spectrum	Limits of maguitude	Equations of condition for the unknown b	Number of stars
Fo	± 8.9	$a-0.84 b=-0.09+0.00 c$	17
	$\geqslant 9.0$	$a+0.39 b=-0.05-0.48 c$	14
F_{1}	$\leqq 9.2$	$a-0.39 b=+0.05-0.57 c$	16
	9.3 to 9.7	$a+0.50 b=-0.04-1.41 c$	10
	$\geqq 9.8$	$a+1.01 b=-0.08-1.22 c$	16
F2	$\leqq 8.9$	$a-0.82 b=0.00+0.64 c$	9
	$\geqslant 9.0$	$a+0.30 b=-0.08-0.39 c$	9
F3	≤ 8.9	$a-0.86 b=+0.03-0.41 c$	9
	$\geqslant 9.0$	$a+0.43 b=-0.05-0.28 c$	8
F5	$\leqq 8.9$	$a-0.74 b=+0.07-0.55 c$	25
	$\leqq 9.0$	$a+0.35 b=+0.02-0.61 c$	18
F8	$\leqq 7.9$	$a-1.70 b=+0.11+0.02 c$	10
	8.0 to 8.9	$a-0.52 b=+0.12-0.36 c$	24
	$\geqq 9.0$	$a+0.46 b=-0.10-0.66 c$	13
Go	$\leqq 7.9$	$a-1.59 b=+0.44-0.28 c$	9
	, 8.0 to 8.9	$a-0.58 b=+0.25-0.40 c$	25
	$\equiv 9.0$	$a+0.28 b=+0.12-0.74 c$	9
G3	$\leqq 8.9$	$a-0.98 b=+0.53-0.05 c$	9
	$\geqslant 9.0$	$a+0.51 b=+0.09-0.69 c$	7
G5	§ 7.9	$a-1.97 b=+0.65+0.73 c$	23
	8.0 to 8.6	$a-0.63 b=+0.55+0.65 c$	20
	$\equiv 8.7$	$a+0.10 b=+0.22+0.27 c$	14
Ko	$\leqq 7.9$	$a-2.04 b=+0.93+0.88 c$	19
	8.0 to 8.7	$a-0.60 b=+0.75+0.26 c$	24
	≥ 8.8	$a+0.12 b=+0.34-0.31 c$	17
K5	$\leqq 8.5$	$a-1.27 b=+1.22+0.70 c$	12
	$\equiv 8.6$	$a-0.12 b=+0.97+0.25 c$	9
M	± 7.9	$a-2.24 b=+1.32+1.17 c$	5
	$\geqslant 8.0$	$a-0.40 b=+0.99+1.24 c$	8

If there are more than two equations, I have solved by the method of least squares, the weights being equal to the number of stars, given in the last column.

The results are:

Table 18.

Group	$b=$	Weight
B	$+0.020-0.391 c$	28
Ao	$-0.005-0.201 c$	118
AI	$-0.086-0.212 c$	25
A2	$-0.100-0.260 c$	43
A3	$+0.016-0.290 c$	25
A4	$-0.134-0.224 c$	12
A5	$-0.033-0.062 c$	10
A6	$-0.070-0.045 c$	6
A8	$-0.085-0.400 c$	20
Fo	$+0.033-0.390 c$	12
FI	$-0.094-0.839 c$	16
F2	$-0.070-0.920 c$	20
F3	$-0.061-0.100 c$	7
F5	$-0.040-0.055 c$	12
F8	$-0.053-0.166 c$	50
Go	$-0.138-0.503 c$	15
G3	$-0.300-0.430 c$	9
G5	$-0.176-0.179 c$	41
Ko	$-0.214-0.442 c$	54
K5	$-0.218-0.400 c$	7
M	$-0.180+0.038 c$	7

3. Solution of c.

As in the solution of b the stars of some divisions were combined into a single group. The groups are the same as those on page 17.

For the solution of c, the stars of a certain group were divided into two or three sub-groups according to their absolute magnitude. The stars with a very
large or a very small apparent magnitude were omitted, in order to make the mean apperent magnitudes of the sub-groups of stars of different absolute magnitude as equal as possible.

Every sub-group gives an equation of condition, which was written in the form

$$
a+c(\mathrm{M}+3.00)=\text { C. I. }-b(m-9.00) .
$$

If we compute the value of c in this manner, a systematic error will creep in, due to the accidental uncertaintes in the determination of the class of spectrum ${ }^{1}$).

This error will tend to diminish the value of c for the early type stars and to increase its value for the later types. Therefore we have to apply corrections to the colour indices; I have computed these corrections, but they are so small, that they may be neglected.

Now wo can derive c as a function of b :
The stars of every group were divided into two or three subgroups according to the amount of their absolute magnitude.

Table 19.

Spectrum	Limits of Abs. magn.	Equations of condition for the unknown c	Number of stars
B	±-4.01	$a-2.05 c=-0.33+1.01 b$	9
	≥-4.00	$a-0.01 c=-0.31-0.13 b$	8
Ao	\$-4.01	$a-2.42 c=-0.28+0.52 b$	25
	-4.00 to - 3.01	$a-0.41 c=-0.35+0.46 b$	23
	\equiv - 3.00	$a+0.75 c=-0.25-0.34 b$	20
AI	§-3.61	$a-1.18 c=-0.23+0.69 b$	8
	$\geqslant-3.60$	$a-0.15 c=-0.25-0.03 b$	8
A2	$\leqq-4.01$	$a-1.73 c=-0.24+0.81 b$	18
	-4.00 to -3.01	$a-0.56 c=-0.27+0.35 b$	17
	$\geqslant-3.00$	$a+0.52 c=-0.33+0.16 b$	16
A3	$\leqq-3.01$	$a-0.73 c=-0.13+0.21 b$	15
	$\equiv-3.00$	$a+0.67 c=-0.17-0.44 b$	18
A_{4}	§-3.01	$a-0.56 c=-0.30-0.10 b$	7
	$\geqslant-3.00$	$a+0.70 c=-0.33-0.41 b$	7
A5	$\leqq-3.01$	$a-1.12 c=-0.19+0.09 b$	15
	$\geqslant-3.00$	$a+0.70 c=-0.19-0.01 b$	21

[^6]Table 19 （continued）．

Spectrum	Limits of Abs．magn．	Equations of condition for the unknown c	Number of stars
A6	§－2．01	$a+0.15 c=-0.17-0.70 b$	6
	≥-2.00	$a+1.33 c=-0.13-0.70 b$	7
A8	S－2．51	$a-0.69 c=+0.06-0.33 b$	9
	\＃－2．50	$a+1.63 c=-0.25-0.64 b$	9
Fo		$a-1.04 c=-0.1 \mathrm{I}+0.47 b$	19
	$\equiv-3.00$	$a+0.86 c=-0.12-0.10 b$	17
F_{1}	इ－3．01	$a-1.07 c=+0.03-0.39 b$	9
	-3.00 to－ 2.01	$a+0.36 c=+0.04-0.42 b$	15
	≥-2.00 ．	$a+1.85 c=-0.06-0.50 b$	21
F2	三－3．01	$a-2.26 c=-0.03+0.33 b$	6
	\＃－3．00	$a+1.00 c=-0.05+0.34 b$	8
F_{3}	इ－3．01	$a-0.63 c=+0.04+0.25 b$	6
	$\equiv-3.00$	$a+0.64 c=-0.09+0.06 b$	9
F5	इ－3．01	$a-0.60 c=+0.07+0.47 b$	10
	-3.00 to－ 2.01	$a+0.42 c=+0.03+0.20 b$	19
	$\geqslant-2.00$	$a+1.54 c=+0.07+0.02 b$	17
F8	इ－3．01	$a-0.78 c=+0.13+0.72 b$	16
	－3．00 to－ 2.01	$a+0.46 c=+0.05+0.30 b$	12
	\＃－2．00	$a+1.67 c=-0.01+0.42 b$	18
Go	§－3．01	$a-1.46 c=+0.43+0.90 b$	16
	$\geqslant-3.00$	$a+1.27 c=+0.15+0.57 b$	26
G3	S－2．41	$a-0.34 c=+0.38+0.37 b$	12
	$\geqq 2.40$	$a+1.56 c=+0.22-0.01 b$	10
G5	S－4．01	$a-2.09 c=+0.56+1.09 b$	20
	－4．00 to－ 3.01	$a-0.58 c=+0.712 .26 b$	17
	三－3．00	$a+0.73 c=+0.38+0.77 b$	15
Ko	S－4．01	$a-1.86 c=+0.88+1.28 b$	23
	-4.00 to -2.70	$a-0.26 c=+0.73+0.85 b$	24
	\＃－2．69	$a+1.13 c=+0.56+0.31 b$	17
K5	三－3．50	$a-1.21 c=+1.27+1.00 b$	10
	ミ－3．49	$a-0.15 c-+1.00+0.52 b$	12
M	§－4．01	$a-2.31 c=+1.13+0.87 b$	6
	≥-4.00	$a-0.43 c=+1.06+1.118$	7

If there are more than two equations，we solve by least squares，the weight of every equation being equal to the number of stars．

ON THE CHANGE OF COLOUR INDEX WITH ABSOLUTE AND APPARENT MAGNITUDE. 23 The values of c are found in the following table:

Table 20.

Group	$c=$	Weight
B	$+0.007-0.559 b$	18
A0	$-0.001-0.232 b$	116
A1	$-0.030-0.700 b$	4
A2	$-0.034-0.294 b$	43
A3	$-0.031-0.464 b$	16
A4	$-0.026-0.246 b$	6
A5	$+0.002-0.055 b$	29
A6	$+0.030+0.000 b$	4
A8	$-0.134-0.134 b$	24
Fo	$-0.008-0.300 b$	32
F1	$-0.037-0.041 b$	58
F2	$-0.004+0.003 b$	42
F3	$-0.098-0.150 b$	6
F5	$+0001-0.210 b$	30
F8	$-0.050-0.116 b$	52
G0	$-0.100-0.121 b$	74
G3	$-0.084-0.200 b$	20
G5	$-0.056-0.107 b$	70
K0	$-0.100-0.315 b$	89
K5	$-0.230-0.435 b$	6
M	$-0.035+0.128 b$	11

4. Values of b and c.

Combining the tables 18 and 20, we find for b and c the following values:

Table 2 I .

Group	b	Weight	c	Weight
B	$+\begin{aligned} & \mathrm{m} \\ & +0.022 \end{aligned}$	13	$\stackrel{m}{\mathrm{~m}}-0.005$	8
Ao	-0.005	104	0.000	102
AI	-0.094	15	+0.038	2
A2	--0.099	35	-0.004	35
A_{3}	+0.029	14	-0.045	9
A4	-0.135	10	+0.005	5
A5	-0.033	10	0.000	29
A6	-0.071	6	+0.030	4
As	-0.033	6	-0.130	22
Fo	+0.041	9	-0.021	19
Fi	-0.065	13	-0.035	47
F2	-0.066	18	-0.004	29
F3	-0.052	7	-0.090	6
F5	-0.041	12	+0.018	30
F8	-0.047	46	-0.036	48
Go	-0.093	13	-0.090	64
G3	-0.272	10	-0.026	22
G5	-0.169	33	-0.039	56
Ko	-0.177	37	-0.084	61
K5	-0.154	4	-0.160	3
M	-0.182	7	-0.053	11

5. Discussion of the results.

When we combine the values of b according to the spectral types B, A, F, G, K and M, we find:

Table 22.

Spectrum	Average b	Weight	p. e. of b
B and A	-0.033	213	± 0.010
F	-0.044	105	± 0.008
G	-0.170	56	± 0.027
K and M	-0.176	48	± 0.003

On the average the probable error of the unit of weight is $\pm \mathrm{o}^{\mathrm{m}} .125$.
The unit of weight in these computations is the weight of a single colourindex determination i. e. the difference between the photogr. magnitude of a star of the Greenwich catalogue and the vis. magn. of Potsdam (Muller and Kron). For the weight of the second member of every equation of condition was taken equal to the number of stars from which the latter was derived.

As to the fact that b is different for different spectral classes, Prof. Kapteyn found the same result in his paper On the Absorption of light in space (Contributions Mount Wilson No. 42). The author attributes the phenomenon to an error in the photogr. scale of the Draper Catalogue (see pages 5 and 6 of the above-mentioned paper).

In the same manner I have treated the values of c :
Table 23.

Spectrum	Average c	Weight	p. e. of c
B and A	-m	0.015	216
F	-0.022	179	± 0.010
G	-0.060	142	± 0.007
K and M	-0.083	75	± 0.008

Here we find on the average the same value for the probable error of the unit of weight i. e. the probable error of a single colour-index determination, viz. $\pm \mathrm{c}^{\mathrm{m}} .126$.

6. Summary of results.

1) The later spectral types predominate among the fainter stars (Table 15)
2) The apparent faint stars are, ceteris paribus, bluer thant he bright stars (Table 22).

In my opinion this effect is probably due to an error in the photographic scale of the Greenwich catalogue or an error in the visual scale of Potsdam.

The surprising result of table 22 is, that the value of b changes with the spectrum.
3) The stars with small proper motion are, ceteris paribus, redder than those with large proper motion (Table 23).

This effect is probably due to an influence of the absolute magnitude on the colour. This influence seems to increase with advancing type, but the effect
seems not to exist for the B and A stars, because for these spectra the value

The same phenomenon is found by Dr. P. J. van Rhijn in his dissertation Derivation of the change of colour with distance and apparent magnitude and by Adams and Kohlschutter. In the discussion of the results on page 71, of the above-mentioned dissertation we can see that c i. e. the increase of the colour index per unit of distance for the B-stars and early A-stars is equal to 0.00000 , whereas c shows a systematic change with the spectral type.

Adams and Конlschutter came to the following conclusion on page I of their paper Some spectral criteria for the determination of absolute stellar magnitudes ${ }^{1}$).
,The continuous spectrum of the small proper motion stars is relatively fainter in the violet as compared with the red than is the spectrum of the large proper motion stars. The magnitude of this effect appears to depend on the spectral type, and increases with advancing type between Fo and Ko."

[^7]
TABLES AND PLATES.

EXPLANATION OF THE TABLES AND THE PLATES.

Columns 2 and 3 give a and δ of the stars from Astrographic catalogre 1900 Greenwich section, Volume III.
Column 4 gives the numbers from the Bonner Durchmusterung.
Column 5 is taken from the above mentioned Astrographic catalogue, applying a correction of $+o^{m} .1$ (see pages 5 and 6)
Column 6 contains the visual magnitudes, determined by Muller and Kron.
Column 7 gives the differences between the magnitudes in the columns 5 and 6.
Columns 8, 9 and 10 give the spectra.
Column 1 I contains the total proper motion (see page 6).
Plates: The ordinate represents the relative intensities between several spectral lines.
The abscissa gives the spectrum.
There are three curves $\left(\frac{\mathrm{H}_{\delta}}{\mathrm{K}}, \frac{\mathrm{H}}{\mathrm{K}}\right.$ and $\left.\frac{\mathrm{H}}{\mathrm{H}_{\delta}}\right)$ for large dispersion $\left(\mathrm{P}_{2}\right)$ and two curves $\left(\frac{\mathrm{H}}{\mathrm{K}}\right.$ and $\left.\frac{\mathrm{H}}{\mathrm{H}_{\zeta}}\right)$ for small dispersion (P_{t}).

ZONE 79.

[^8]Zone 8i. - Continued.

No.		1900.0		1900.0	$\begin{aligned} & \text { B. D. } \\ & \text { No. } \end{aligned}$	Int. phot. magn. Greenwich.	Vis. magn. Muller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.
	α								author.	Harvard circular 180.	Yerkes Actinometry.	
	h	m										"
46	5	14.4	81		183	9.2	8.6	+0.6	Go	Go		0.174
47 48	5	15.5 20.4	81 81 81	34 19	183 187	9.8 8.7	8.7 8.7	0.1 0.0	A5	F2		0.025 0.021
49		23.8	81	15	+189	9.7	9.6	0. +0.1 +0.1	${ }_{\text {F }}$			0.022
50	5	35.0	81	45	192	8.7	8.8	-0.1	AI	Ao		0.031
51	5	38.4	81	20	194	8.5	8.0	+ 0.5	Go	G5		0.010
52	5	40.4	81	20	195	10.0	10.1	-0.1	A^{2}			0.011
53	5	50.2	81 81	31	201	9.5	9.0	$\begin{array}{r}\text { + } \\ +0.5 \\ \hline 0.2\end{array}$	F	Go		0.375
54 55	5	51.1 52.7	81 81	38 6	202 204	I 9.2 9.8	10.4 9.8	+0.2 -0.0	Ao B9			0.017
56		53.6	81	52	205	10.2	10.2	0.0	A			0.017
57	5	53.8	81	4	207	10.1	10.0	+ 0.1	Ao			0.006
58	5	58.7	8 Sr	58	210	9.6	8.9	+ 0.7	Ko	Ko		0.030
59	6	3.6	8 8	47	214	9.9	9.3	+ 0.6	Ko	G5		0.025
60	6	3.8	81	8	215	10.0	9.2	+ 0.8	K			0.065
61	6	24.2	8 I	42	221	9.7	9.5	+ 0.2	F3			0.022
62	6	26.1	8 8	54	222	9.3	9.3	0.0 +1.2	${ }^{\text {A }}$	F_{2}		0.022
63	6	29.4	81	14	225	9.6	8.4	+ 1.2	M	K_{5}		0.012
64	6	37.2	81	49	226	10.1	9.9	+ 0.2	$\stackrel{\mathrm{FI}}{\mathrm{G}}$			0.018
65	6	39.5	81	3	227	9.1	9.6	+ 0.1	G3	Go		0.034
66 67	6	47.6 49.0	81 81 81	53 21	229 231	9.5 9.6	9.6 9.1	-0.1 +0.5	${ }_{\mathrm{K}}^{\mathrm{K}}$	G5		0.007 0.030
68	6	51.3	81	44	233	9.6	8.8	+ 0.5 +0.8	K	K2		0.033
69	6	56.1	8 I	10	236	9.7	9.4	+ 0.3	K			0.023
70	7	2.3	8I	2	239	9.1	8.1	+ 1.0	K	Ko		0.071
71	7	2.4	81	27	238	9.9	10.3	- 0.4	AI			0.019
72	7	2.6	8 I	20	240	10.1	10.4	- 0.3	B9			0.009
73	7	6.4	8 S	26	242	6.2	6.6	- 0.4	$\stackrel{\mathrm{B}}{8}$	${ }^{\mathrm{B}} 9$	138	0.026
74	7	8.2	8 I	Io	243	8.9	8.9	0.0	A8	F2		0.034
75	7	8.7	81	14	244	10.1	10.2	-0.1	A_{4}			0.029
76	7	14.0	81	13	250	9.9	10.5	- 0.6	A_{2}			0.018
77	7	16.5	81	6	252	7.3	6.7	$+0.6$	K	Ko		0.020
78	7	27.7	8 8	55	$213 \dagger$	7.8	7.8	0.0	${ }^{\mathrm{B}} 9$	B9	Ao	0.006
79	7	38.9	8 I	36	257	8.3	7.2	+ I .1	Ko	K2	K2	0.043
80	7	50.4	81	59	$224 \dagger$	9.2	8.3	+ 0.9	Ko			0.035
81	7	50.8	81	58	$226 \dagger$	9.4	9.7	-0.3	Ao			0.014
82	7	54.5	8 I	20	263	9.2	8.7	+0.5	G8			0.018
83	11	19.6	81	6	369	9.2	9.7	-0.5	A_{2}	Ao		0.016
84	11	22.9	${ }_{81}^{81}$	35	370	10.0			F3	F8		0.062
85	11	24.8	81	4 I	373	6.2	6.4	- 0.2	Ao	Ao	A2	0. 169
86	11	28.0	81	22	375	9.4	9.7	-0.3	A2	Ao		0.009
87	11	29.4	81	5 I	$338{ }^{\text {¢ }}$	9.5	9.8	-0.3	${ }^{\text {A }} 7$			0.150
88	II	35.9	81	8	384	8.6	9.0	- 0.4	A2	A 5		0.041
89	11	52.8	$8 \mathrm{8I}$	1 I	388	8.4	8.4	0.0	F_{I}	F8		0.080
90	II	55.1	8I	25	389	7.7	6.5	+ 1.2	M	Ma	K8	0.072
91	12	7.0	81	59	$358 \dagger$	10.3	10.5	- 0.2	A6			0.008
92	12	30.2	81	30	399	9.0	8.4	+ 0.6	G6	G5		0.039
93	12	4 I .9	81	10	402	6.4	6.6	- 0.2	A2 A_{2}	- Ao Ao	A_{3}	0.035 0.014
94	12	45.4 53.7	81 81	49 5	$375 \dagger$ $379 \dagger$	11.4 9.6	I0.0	- 0.4	A2 A_{9}			0.014 0.036

\dagger Zone 82 in B. D.

TABLES.

Zone 8r. - Continued.

[^9]Zone 82. - Continued.

No.	a 1900.0		$\delta 1900.0$		$\begin{aligned} & \text { B. D. } \\ & \text { No. } \end{aligned}$	Int. phot. magn. Greenwich.	Vis. magn. Maller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	m												.
141	5	13.7		36	144	9.8	9.5	+ 0.3	Fi			0.043		
142	5	22.9		22	146	10.2	10.3	-0.1	Ao			0.004		
143	5	28.2 33	82	38	147	10.2	9.1	+ 1.1	K5			0.021		
144	${ }_{5}^{5}$	33.8		42	148	10.1	10.2	0.1	A3			0.033		
	- 5	37.5		37		10.3								
145		37.5 37.5		37 37	151	$\left.\begin{array}{r} 9.5 \\ 11.0 \end{array}\right\}$	10.1		${ }^{\text {a }}$			0.027		
146	5	40.3	82	44	152	7.8	7.8	0.0	F6	F8		0.061		
147	5	44.5	82	49	154	10.1	10.4	-0.3	${ }^{\text {A }}$			0.024		
148	5	46.9	82	27	155	9.5	8.3	+ 1.2	K_{3}	Ko		0.019		
149	5	53.4	82	43	156	10.3	10.3	0.0	A			0.030		
150	6	13.6	82	36	168	9.0	8.7	+ 0.3	F8	Go		0.009		
151	6	17.0	82	3	173	9.8	9.9	- 0.1	A5			0.023		
152	6	19.8	82	21	174	9.3	9.1	+ 0.2	Ko	G		0.156		
153	6	23.4	83	12	177	6.8	6.8	0.0	A2	${ }^{\text {A2 }}$	A_{3}	0.054		
154	6	23.5	82	30	176	9.3	8.7	+ 0.6	K	Ko		0.017		
155	6	28.1	82	39	179	10.2	10.6	- 0.4	A2			0.013		
156	6	34.5	82	41	183	10.2	10.1	+ 0.1	G3			0.021		
157	6	36.8	82	42	184	9.8	9.6	+ 0.2	Fir			0.111		
158	6	37.1	82	36	185	9.6	8.7	+ 0.9	K	K2		0.041		
${ }_{1}^{159}$	6	39.7	82 82	47	187 I 88	9.9 9.3	10.2 8.6	-0.3 +0.7	A Ko			0.017 0.016		
160	6	39.8	82	23	IS8	9.3	8.6	+0.7	Ko	K2		0.016		
161	6	42.1	82	44	189	9.0	9.3	- 0.3	${ }^{\text {A }}$	${ }^{\text {A2 }}$		0.017		
162	6	45.9	82	-	191	9.7	8.9	+0.7	K	K_{2}		0.015		
163	6	54.6	82	36	194	8.7	7.4	+ 1.3	K 5	K5		0.013		
164	7	10.1	82	36	201	6.7	5.1	+ 1.6	M	Ma	M	0.053		
165	7	12.4	82	52	203	10.4	10.6	- 0.2	Fi			0.027		
166	7	14.9	82	12	204	8.6	8.7	- 0.1	F5	F5		0.014		
167	7	17.5	82	44	205	9.6	9.7	- 0.1	A5			0.012		
168	7	20.1	82	53	207	8.7	8.8	- 0.1	F5	F5		0.042		
169	7	20.3	82	57	$188+$	10.1	9.7	+ 0.4	F5			0.026		
170	7	30.1	82	57	$195 \dagger$	9.7	9.2	+0.5	A_{3}	F		0.011		
171	7	40.9	82	26	217	9.8	10.1	- 0.3	G5			0.022		
172	7	49.0	82	4 I	222	9.0	9.4	- 0.4	${ }_{\text {AI }}$	A		0.007		
173	7	52.6	82	45	228	9.0	9.2	- 0.2	F4	F5		0.017		
174	7		82	3	231	8.4	8.2	+ 0.2	Go	F5		0.067		
175	8	5.3	82	44	235	6.3	6.5	- 0.2	Ao	Ao	B9	0.034		
176	8	18.2	82	29	245	9.2	8.8	+ 0.4	G_{5}	G5		0.006		
177	8	22.9	82	57	$220 \dagger$	9.7	8.6	+ 1.1	K	Ko		0.010		
178	8	27.3	82	41	251	8.8	8.7	+ 0.1	Go	F5		0.025		
179	8	28.3	82	36	253	6.7	7.1 9.6	- 0.4	B 9 A 5	Ao	Ao	0.015		
180	10	52.1	82	43	32 I	9.3	9.6	-0.3	A5			0.028		
181	11	2.2	82	17	325	7.7	7.4	+ 0.3	F8	Go	F8	0.214		
182	11	23.0	82	39	332	9.0	9.0	0.0	F2	Go		0.079		
183	11	33.3	82	38	342	8.9	8.3	+ 0.6	Ko	G5		0.035		
184	11	36.8	S_{2}	3	343	8.9	9.2	-0.3	${ }_{\text {A }}$	A_{3}		0.059		
185	11	38.1	82	53	$336 \dagger$	8.6	7.9	+ 0.7	G3	G5		0.024		
186	11	48.4	82	30	348	9.1	9.1	0.0	A6	F8		0.051		
187	11	52.8	82	44	351	9.5	9.6	- 0.1	Fi			0.016		
188	${ }_{1}^{11}$	58.3	82	15	355	8.2	7.6	+ 0.6	Ko	G5		0.018		
189	12	6.5	82	16	356	7.4	6.2	+ 1.2	G6	K2	K2	0.015		
190	12	7.0	82	16	357	8.4	8.5	-0.1	A 7	F5		0.041		

\dagger Zone 83 in B. D.

Zone 82. -- Continued.

No.	a 1900.0		1900.0		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Muller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry					
	h	m			${ }^{\circ}$,								"
191		23.3	82	2	363	9.3	9.4	-0.1	${ }^{\text {A }} 5$			0.021		
192	12	25.2	82	33	365	8.2	8.3	-0.1	${ }_{5}{ }_{5}$	F_{5}		0.060		
193	12	31.2	82	29	368	9.7	9.6	+ 0.1	Fo			0.058		
194	12	45.1 46.7	82 82	15	374 377	9.2 10.1	9.1	+ 0.1	F2 F1			0.005 0.085		
195		46.7	82	6	377	10.1			F1					
196	12	47.8	82	58	$365 \dagger$	9.0	9.1	- 0.1	A_{4}	A_{3}		0.017		
197	12	53.4	82	42	378	8.9	9.0	- 0.1	A6	${ }^{\text {A }} 3$		0.068		
198	13	16.5	82	2	390	8.4	8.5	- 0.1	FI	F5		0.072		
199	13	41.9	82	12	402	9.5	9.9	-0.4	AI			0.019 0.018		
200	13	56.7	82	31	406	10.1	10.1	0.0	A_{3}			0.018		
201	13	59.1	82	6	407	8.3	8.7	- 0.4	A2	Ao		0.017		
202	14	31.0	82	24	423	8.9	9.1	- 0.2	${ }^{\text {A }} 3$	A2		0.034		
203	14	43.0	82	54	$423 \dagger$	8.9	8.7	+0.2	${ }_{\text {Ko }} 6$			0.021		
204	14	57.1	82	55	${ }_{451}{ }^{1+}$	6.2	var. ${ }^{5.9}$.5-8.0	+ 0.3	$\mathrm{G}_{\mathrm{G}} 6$	Go Ko	F8	0.271 0.029		
205	19	58.9	82	11	598	8.5	var. 7.5-8.0		G	Ko		0.029		
206	20	13.1	82	32	609	8.5	8.4	+ 0.1	Go	F8		0.096		
207	20	24.9	82	44	61t	9.0	9.2	- 0.2	Ao	Ao		0.004		
208	20	28.7	82	2	706*	7.2	7.2	0.0	F8	F5	F2	0.043		
209	20	29.4	82	31	613	8.1	8.3 6.9	-0.4 +0.6	A 1 G_{4}	${ }_{\text {G }}$	G2	0.014 0.004		
210	20	34.4	82	51	617	7.5	6.9	+ 0.6	G4	G5	G2			
211	20	48.1	82	41	627	8.3	8.4	-0.1	A_{2}	${ }^{\text {A } 5}$		0.045		
212	20	49.9	82	10	718*	5.7	6.2 8.3	-0.5 -0.2	Ao	A5	B8	0.059 0.017		
213	21	5.5	82	35	636 640	8.1 9.7	8.3 9.9	-0.2 -0.2	A3 B9			0.017		
214 215	21	14.0	82 82	25 37	640 644	9.7 9.8	9.9 9.9	-0.2 -0.1	Ao			0.039		
216	21	23.0	82	5	737*	8.1	8.1	0.0	G_{1}	F8	F	0. 100		
217	21	27.9	82 82	33	648 670	8.1	8.3 8.4	-0.2 +0.4	$\mathrm{Cl}_{\mathrm{G} 2}$	A2 Go		0.006 0.016		
218	21	30.1 32.1	82 82	51 3	650 ${ }_{\text {743* }}$	8.8 9.4	8.4 9.5	$\begin{array}{r}+0.4 \\ +0.1 \\ \hline\end{array}$	G2 A_{3}	Go		0.021		
219 220	21	32.1 41.9	82 82	38 28	${ }^{743}{ }^{\mathbf{7} 7}$	8.8 8.7	88.3	$\begin{array}{r}+ \\ + \\ + \\ \hline\end{array}$	${ }_{\text {G }}$	G5		0.042		
221	21	43.8	82	59	660	10.5	10.7	- 0.2	A			0.039		
222	21	45.9	82	11	753*	9.8	9.8	-0.0	F			0.004		
223	21	48.9	82	37	663	9.5	8.3	+ 1.2 +0.5	G			0.021 0.011		
224	21	54.6	8	59	667	9.2	8.7 7.2	+0.5 +0.4	K			0.011 0.136		
225	22	1.8	82	23	673	7.6	7.2	+ 0.4	F1	F5	F5	0.136		
226	22	1.9	82	23	674	8.2	7.8 10.0	+ 0.4 -0.1				0.142 0.019		
227 228	22 22	7.2 9.0	82 82	14 10	677 767	9.9 7.8	10.0 7.9	- 0.1	A6	Ao		0.019 0.046		
228	22 22	9.0 21.1	82 82	10 14	767 687	7.8 9.7	7.9 9.8	-0.1	Ko			0.018		
230	22	22.4	82	28	688	9.4	9.4	0.0	G5			0.176		
231	22	43.9	82	45	700	7.3	7.5	- 0.2	${ }_{\text {AI }}$	B8		0.034		
232	22	47.9	82	37	703	6.0	4.8	+1.2	Ko	Ko	K2	0.059		
233	22	56.7	82	31	707	9.0	8.4	+0.6 +0.7	Ko	Ko		0.024 0.046		
234	23	7.5	82	2	810*	8.3 9.1		+0.7 +0.9						
235	23	13.5	82	54	712		Z ONE	83						
236	4	11.6	83	57	111	8.7	8.6	+ 0.1 +0.6	F4	Ko	G2	0.039 0.050		
237	4	21.5	83 83	50	114	8.8	7.4 8.6	+0.6 +0.2	G5	Ko	G2	-0.039		
238 239	4	28.1	83 83 83	33 7	118	8.8 8.2	8.6 8.3 7.8	-0.2	${ }^{\text {F }}$	F_{5}		0.043		
239 240	4	34.1 37.0	83 83	1	1258	7.4	7.8	-0.4	B9	B9		0.033		

\dagger Zone 83 in B. D.

* Zone 81 in B. D.

Zone 82 in B. D.

Zone 83.- Continued.

No.	a 1900.0		$\delta 1900.0$		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Müller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	m			\bigcirc									"
241		38.4	S3	33	123	$9 \cdot 4$	8.9	+ 0.5	F 5			0.022		
242		42.4	83	19	126	8.8	8.0	$+0.8$	K	K_{2}		0.028		
243				24	129	9.2	8.8	+ 0.4	K5			0.033		
244	5	4.9	83	43	137	8.5	8.8	-0.3	${ }^{\text {A }}$	F5		0.053		
245			83	52	138	9.4	9.2	+ 0.2	Fi			0.016		
246	5	8.9	83	19	139	9.3	9.3	0.0	G	Go		0.065		
247	5	1 I .8	83	47	141	7.0	7.2	- 0.2	Ao	Ao	Ao	0.021		
248	5	14.9	83	17	142	9.7	8.7	+ 1.0	M	K5		0.009		
249	5	16.3	83	4	144	9.7	9.1	$+0.6$	Ko	Ko		0.026		
250	5	19.5	83	21	145	9.4	9.7	-0.3	A3	A		0.010		
251	5	30.0	83	5	151	10.0	9.9	+ 0.1	G3			0.031		
252	5	30.1	83	22	150	10.0	10.5	-0.5	A3			0.017		
253	5	30.3	83	34	149	8.9	8.2	+0.7	G5	Ko		0.029		
254	5	34.6	83	40	153	9.5	9.7	-0.2	Ko			0.026		
255	5	41.7	83	36	155	9.9	10.0	- 0.1	G3			0.023		
256	6	9.7	83	49	164	9. I	9.3	- 0.2	F2	Fo		0.033		
257	6	24.6	83	33	167	9.9	10.0	- 0.1	Fi			0.021		
258	6	40.2	83	31	170	9.4	9.5	-0.1	F 5			0.026		
259	6	41.1	83	45	172	9.2.	8.8	+ 0.4	G3	G5		0.235		
260	6	$44 \cdot 5$	83	19	174	10.4	10.5	- 0.1	A			0.03 I		
261	6	47.7	83	9	177	9.6	9. I	+0.5	Go	Ko		0.032		
262	6	50.4	83	9	178	8.9	8.2	+0.7	G	Ko		0.025		
263	6	53.2	83	1	181	9.7	$9^{\circ} \mathrm{I}$	+ 0.6	Ko			0.032		
264	6	59.2	83	39	182	8.4	8.6	-0.2	${ }_{\text {A }}{ }_{\text {F }}$	B9		0.031		
265	7	9.3	83	32	185	10.3	10.5	- 0.2	FI	-		0.017		
266	7	25.9	83	18	191	9.0	S.o	+ 1.0	G	Ko		0.019		
267	7	27.9	83	12	193	10.4	10.2	+ 0.2	${ }_{\text {A }}$			0.012		
268	7	29.1	83	48	194	$9 \cdot 4$	9.4	0.0	F_{1}			0.064		
269	7	42.1	S3	7	201	10.3	10.0	+0.3	${ }_{\text {A }}$			0.039		
270	7	57.0	83	13	206	10.6	10.7	- O.I	A2			0.047		
271	8	3.6	83	24	207	7.9	$7 \cdot 7$	+ 0.2	F6	F8		0.080		
272	8	5.6	83	4	210	9.5	9.6	-0.1	A8			0.020		
273	8	8.9	83	18	212	9.5	9.2	$+0.3$	F5			0.075		
274	8	9.5	83	40	213	107	10.7	0.0 $+\quad 0.1$	$\stackrel{\text { A }}{\text { Go }}$			0.008		
275	8	9.6	83	29	214	9.8	9.7	+ O.I	Go			0.048		
276	8	27.1	S3	35	223	9.6	10. I	- 0.5	A_{2}			0.042		
277	8	27.7	83	46	224	$9 \cdot 5$	9.9	- 0.4	A_{2}			0.009		
278	8	35.5	83	55	$187 \dagger$	9.0	9.4	-0.4	A_{4}	A_{3}		0.029		
279	8	41.8	83	6	232	8.0	7.3	+0.7	G5	Ko	G3	0.007		
280	8	44.5	83	8	233	7.3	7.1	+ 0.2	Go	Fo	FI	0.014		
281	8	49.1	83	34	236	9.1	8.5	+ o.ó	Gi	Go		0.002		
282	8	57.0	83	45	239	8.9	9.1	-0.2	Ao			0.008		
283	10	35.8	83	59	$241 \dagger$	10.1	10.0	+ O.I	A9			0.020		
284	10	52.0	83		312	8.7	$\left\lvert\, \begin{gathered}\text { Double } \\ 9.3+10.1\end{gathered}\right.$		F_{2}	F8		0.028		
285	10	58.8	83		318	8.6	8.5	+ 0.1	FI	F8		0.103		
286	I I	9.7	83	10	324	9.6	10.1	-0.5	A6			0.036		
287	II	38.0	83	59	$260 \dagger$	8.8	9.2	-0.4	A 1			0.022		
288	11	45.2	83	13	339	8.5	8.7	- 0.2	${ }^{\text {A } 2}$	A2		0.023		
289	1 I	52.3	83 83	23	343	9.4	9.5	-0.1	F3			0.061		
290	11	$54 \cdot 5$	83		345	9.9	9.8	+0.1	A6			0.039		

\dagger Zone 84 in B. I),

Zone 83. - Continued.

No.	a 1900.0		$\delta 1900.0$		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Maller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich		
			author.	Harvard circular I8o.					Yerkes Actinometry.					
	b	m			-									
291	12	14.8	83		273*	10.2		- 0.1				0.030		
292 293	12	16.0	83 83	32 56 5	35°	10.2 9.3	$\begin{array}{r}10.3 \\ \hline .6\end{array}$	-0.1 -0.3	Ko			0.030 0.021		
293 294	12	16.5 18.9	83	56	274*	8.6	7.9	+ 0.7	Ko	Ko	G	0.009		
295	12	20.7	83	13 59	352 276	8.9 8.5	9.1	-0.2 +0.3	Fi	G		0.049		
296	12		83	13										
297	12	48.9	83	13 4	354 366	9.0 9.6	9.4 9.3	$\begin{array}{r}\text { - } 0.4 \\ +0.3 \\ \hline\end{array}$	A_{F}	${ }_{\text {A }}{ }_{5}$		0.010		
298	12	53.2	83	4	369 369	8.1	9.3	+0.3 +0.9	$\mathrm{F}_{\mathrm{G}} \mathrm{F}$	G5	G-K	0.012		
299	12	53.3	83	46	291*	9.5	9.5	0.0	FI			0.050 0.005		
300	12	58.9	83	28	373	8.2	8.3	-0.1	A3	Ao		0.018		
301	13	11.2	83	55	302*	9.1	8.9	+ 0.2	F_{1}	F 5		0.029		
302	13	26.7	83	49	311*	7.8	7.4	+ 0.4	F6 ${ }_{5}$	G5	F9	0.114		
303	13	45.2	83	15	397	6.8	6.1	+ 0.7	G_{5}	G5	G_{3}			
304 305	13	56.3	83	26	402	10.0	9.9	+ 0.1	Fi	G	G_{3}	0.058 0.050		
305	14	36.4	83	54	327^{*}	9.3	9.2	+ 0.1	F5			0.108 0.050		
306	14	44.5	83	1	424	10.5	10.9	- 0.4	F7					
307	19	4.0	83	46	547	6.8	7.1	- 0.4 -0.3	A_{2}	A2	A2	0.008		
308 309	19	15.7 28.0	83 83	41	549	10.1	10.2	- 0.1	A2			0.045		
310	19	28.0 29.8			55	6.8	6.8	0.0	AI	A_{2}	A2	0.044		
		29.8	8	36	554	9.4	9.7	-0.3	AI			0.025		
311	19	40.8	83	10	557	10.0	10.1	- 0.1	K					
312 313 313	19	45.4	83	33	559	9.7	9.7	0.0	${ }^{\text {A }}$			0.026		
313 314 3	19 20	45.7 6.4	83 83 8	${ }^{6}$	${ }^{592 \dagger} \dagger$	9.1	8.2	+ 0.9	K	Ko		0.012		
315	20	10.0	83	8	$608 \dagger$	8.4	9.3 8.6	0.0 $-\quad 0.2$	Fo_{2}	A5		$\begin{aligned} & 0.065 \\ & 0.028 \end{aligned}$		
316	20	18.5	83	53	572	9.1	8.9	+ 0.2	F5			0.037		
317 318 318	20	19.2 28.7	83	17 58	573	9.9	9.9	+0.0	Fi			${ }^{0.037}$		
319	20	33.0	83 83	58 14	588	9.6 9.2	9.3	+ +0.3 -0.2	G5			0.066		
320	20	34.4	83	18	587	9.2 10.4	90.5	-0.2 -0.1	Ao			$\begin{aligned} & 0.009 \\ & 0.029 \end{aligned}$		
321	20	39.1	83	17	588	6.4	6.6	- 0.2	$A_{\text {I }}$	A2	A2			
322 323 3	20	52.8	83	19	593	9.5	9.9	-0.4	Ao			0.016		
323	20	53.9	83	22	594	9.1	8.5	+0.6	G	K。		0.002		
324	20	59.0	83	33	596	7.5	7.4	+ 0.1	F8	F2		0.114		
325	21	21.6	83	50	603	7.9	7.0	+ 0.9	G	G5	K	0.043		
326	21	31.0	83	8	$651 \dagger$	8.6	8.6	0.0	F6	F8				
327	21	35.4	83	24	613	8.5	8.5	0.0	Go	Fo		0.036		
328	21	39.5	83	30	614	8.2	8.0	+ 0.2	F8	F_{5}		0.035		
329	21	42.7	83	53	615	9.5	9.0	+ 0.5	K			0.028		
330	21	43.0	83	12	6;8 \dagger	10.2	10.3	- 0.1	Ao			0.016		
331	21	44.0	83	10	$661 \dagger$	10.9	10.8	+ 0.1	A					
332	21	45.7	83	51	616	8.1	8.3	-0.2	A_{4}	A_{3}		0.014		
333	21	47.3	83	52	617	8.8	8.5	+ 0.3	K	Ko		0.348		
334	21	50.4	83	34	618	7.4	7.3	+ 0.1	A_{4}	${ }^{\text {a }}$	A_{4}	0.096		
335	21	$55 \cdot 4$	83	34	620	8.9	8.1	+ 0.8	G5	Ko		0.050		
336	22	1.5	83	1	$672 \dagger$	7.8	8.1	-0.3		Fo		0.005		
337 338	22	3.8 12.2	83 83	52	622 626	8.7 9.3	9.1	-0.4	A4 A	A_{5}		0.031		
339	22	12.8	83	5	$682 \dagger$	8.8	8.4	+ 0.4	G3	Kо		0.026		
340	22	14.1	83	18	627	9.0			A			0.022		

[^10]Zone 83. - Continued.

Na.	$\alpha 1900.0$		$\delta 1900.0$		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Maller and Kron.	Colour Index.	Stectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	m			-									"
341	22	22.3	83	2	$689 \dagger$	8.8	8.6	$+0.2$	G	G5		0.305		
342	22	40.5	83	47	635	9.4			${ }_{\text {A }} 5$			0.029		
343	22	48.5	83	Io	$704 \dagger$	8.2	$7 \cdot 3$	+ 0.9	K	K_{2}		0.204		
344	22	55.2	83	49	640	6.1	4.8	+ 1.3	Ko	Ko		0.112		
345	23	13.2	83	42	647	7.5	8.0	-0.5	Ao	B9		0.028		
							Z O N E	4.						
346	0	1.5	84	5 I	546	8.1	8.5	- 0.4	A_{4}	A3		0.016		
347	4	7.9	84	21	77	10.2	10.7	-0.5	${ }_{\mathbf{A}}$			0.042		
348	4	9.0	84	14	78	8.5	7.4	+ I.I	K		Ko	0.034		
349	4	19.5	84	48	83	8.9	9.4	-0.5	F6			0.025		
350	4	24.3	84	26	85	9.0	9.0	0.0	F_{3}			0.03 I		
351	4	33.4	84	42	88	7.6	7.9	- 0.3	B9	A2		0.010		
352	4	43.8	84	46	90	9.3	9.9	- 0.6	A_{4}	A 2		0.008		
353	4	50.8	84	5	130^{*}	9.6	8.7	+ 0.9	M			0.030		
354	4	58.2	84	45	97	8.7	8.7	0.0	F5	F5		0.168		
355	5	16.7	84	14	106	9.1	8.5	$+0.6$	Ko	K_{2}		0.032		
356	5	43.6	84	59	II2	9.0	8.9	+ 0.1	F8	G		0.176		
357	5	46.3	84	6	II4	8.7	8.7	0.0	Gol	F 5		0.038		
398	5	49.2	84	7	117	8.8	8.8	0.0	F8	F5		0.083		
359	5	53.8	84	12	118	8.9	8.8	+ 0.1	Go	F8		0.087		
360	6	0.8	84	49	120	10.0	10.0	0.0	A			0.065		
36I	6	28.6	84	46	132	9.5	10.1	-0.6	AI			0.026		
362	6	34. I	84	47	135	8.1	7.6	+ 0.5	G_{4}	G5		0.099		
363	6	$35 \cdot 3$	84	52	136	9.2	10.2	- 1.0	A_{4}			0.02 I		
364	6	37.9	84	6	139	10.1	10.8	-0.7	AO			0.034		
365	7	13.7	84	24	152	8.9	8.1	+ $0 . S$	K5	Ko		0.054		
366	7	16.3	84	28	149	9.6	9.7	- 0.1	${ }^{\text {A }}$			0.037		
367	7	23.5	84	2	I 54	10.0	10.2	-0.2	F			0.073		
368	7	27.7	84	43	I 56	9.5	9.7	-0.2	G			0.041		
369	7	28.9	84	I	158	10.2	10.1	+ 0.1	Fi			0.144		
370	7	32.I	84	4	160	10.2	10.6	-0.4	A2			0.023		
371	7	37,2	84	II	161	$9 \cdot 3$	9.4	-0.1	F3			0.033		
372	7	40.1	84	11	163	9.0	8.7	+ 0.3	F9	G5		0.023		
373	7	41.5	84	56	1178	$9 \cdot 3$	8.5	+ 0.8	F1			0.054		
374	7	45.8	84	4 I	168	7.4	7.8	- 0.4	Ao	Ao		0.019		
375	7	53.0	84	2 I	169	6.4	6.7	-0.3	Ao	Ao	Ao	0.054		
376	7	53.9	84	36	170	9.4	9.3	+ 0.1	FI			0.124		
372	7	54.2	84	18	171	9.6	9.5	+ 0.1	Fi			0.008		
378	8	1.9	84	19	173	8.4	8.4	0.0	Go	Fo		0.033		
379	8		84	27	175	9.7	9.7	0.0	A6			0.021		
380	8	8.9	84	33	177	10.1	9.8	+ 0.3	G3			0.079		
381	8		84	33	178	9.4	8.5	+ 0.6	F7			0.027		
382	8	23.6	84	28	183 186	94	9.5	-0.1	A6			0.053		
383 384	8	35.4	84 84	16 5	186	7.9	7.7	+ 0.2	F_{5}	F8		0.161		
384 385	8	53.3	84	53	1358	9.0	9.0	0.0 $+\quad 0.2$	F A 7			0.016		
385	8	$54 \cdot 5$	84	35	196	6.7	6.5	+ 0.2	${ }^{\text {A }}$	- Fo	A6	0.015		

Zone $\delta 2$ in B. D.

* Zone 83 in B. D.
§ Zone 85 in B. D.

Z ONE 84. - Continued.

No.	1900.0		1900.0		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Müller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	${ }^{\mathrm{m}} 6$			\bigcirc	'								"
386	8	56.6	84	2	199	8.5	8.8	- 0.3	Ao	B9		0.030		
387	9	11.6	84	22	204	10.1	10.1	0.0	${ }_{\text {A }}$			0.046		
388	9	31.8	84	48	215	9.5	8.8	+0.7	G	G		0.024		
389	9	34.7	84	57	150 §	8.6	8.0	+ 0.6	G	G5		0.022		
390	10	55.2	84	46	234	5.9	5.7	+ 0.2	A4	A_{3}	A4	0.115		
391	10	16.7	84	4	237	9.0	8.9	+ 0.1	Fo			0.073		
392	10	20.8	84	55	1618	8.0	7.4	+ 0.6	G2	Ko	Go	0.058		
393	10	46.7	84	53	170 §	9.3	8.7	+ 0.6	G3	G5		0.012		
394 395	11	26.2 8.8	84 84	14 4	256 269	9.2 8.5	8.6	+0.6 +0.4 +0.1	F3	Go	F	0.110 0.021		
396	12	36.1	84	11	284	10.0	9.8	+ 0.2	Fif			0.201		
397	12	37.5	84	8	285	10.0	10.3	-0.3	Fi			0.018		
398	12	37.8	84	12	286	7.8	7.5	+ 0.3	Go	Go	F5	0.232		
399	13	1.3	84	48	214 §	9.3	9.4	-0.1	F_{G}	G5		0.144		
400	13	4.6	84	10	296	9.2	8.4	+ 0.8	G3	Ko		0.037		
401	13	17.4	84	26	305	9.3	8.6	+ 0.7	F3	G5		0.030		
402	13	20.5	84	25	307	7.8	7.8	0.0	F_{4}	F2		0.098		
403	13	52.6	84	37	317	9.4	9.7	- 0.3	A_{3}			0.031		
404	14	41.7	84	44	329	9.5	10.1	- 0.6	Ao			0.029		
405	15	1.7	84	20	335	8.2	7.0	+ 1.2	Ko	Ko	K2	0.011		
406	15	29.4	84	13	345	7.8	7.9	- 0.1	A_{3}	Fo		0.031		
407	18	47.4	84	32	423	8.7	8.8	- 0.1	${ }^{\text {a }}$	Fo		0.039		
408	18	54.3	84	47	425	9.2	9.9	-0.7	A			0.022		
409	19	1.1	84	25	426	8.9	9.1	- 0.2	Fir	F8		0.046		
410	19	21.4	84	26	436	9.1	9.2	- 0.1	F4	F5		0.042		
411	19	34.1	84	5	556*	9.0	9.1	- 0.1	A9	Fo		0.033		
412	19	42.7	84	22	440	10.5	10.7	-0.2	${ }_{\text {A }}$			0.018		
413	19	53.8	84	31	445	8.8	8.2	-0.2	${ }_{\text {A }}$	Ao		0.031		
414 415	19 20	56.9	84 84	28 26	446 448	8.8 8.8	8.5 8.9	+0.3 $+\quad 0.1$	F5 A2	Go		0.109 0.038		
415	20	5.5	84	26	448	8.8	8.9	-0.1	A2					
416	20	14.0	84	23	451	6.8	7.1	-0.3	Ao	A2	A2	0.053		
417	20	15.0	84	43	452	9.6	10.2	-0.6	${ }_{\text {B }} 9$			0.032		
418.	20	22.8	84	47	461	8.7	7.9	+0.8 +0.1	G	Ko		0.023 0.076		
$419{ }^{\circ}$	20	24.5	84	14	462	7.4	7.3 7.3	+0.1 +0.2	$\stackrel{\text { G }}{ }$	F8	$\begin{aligned} & \mathrm{A}_{5} \end{aligned}$	0.076 0.082		
420	20	24.5	84	49	463	7.5	7.3	+ 0.2						
421	20	53.4	84	15	474	8.3	8.7	- 0.4	${ }_{\text {A2 }}$	A2		0.040		
422	21	8.6	84	53	$479{ }^{*}$	9.7	10.0	- 0.3	$\mathrm{F}_{\mathbf{F}}$			0.009 0.053		
423	21	27.0	84 84	12 36	608*	8.9 10.0	9.0 10.6	-0.1 -0.6	${ }_{\text {A }}{ }^{1}$	F5		0.053 0.021		
424 425	21	46.8 59.5	84 84	36 21	495 500	10.0 9.3	10.6 9.3	-0.6 0.0	${ }_{\text {G }}$			0.033		
426	22	2.4	84	43	501	9.4	9.8	- 0.4	A^{2}			0.040		
427	22	13.7	84	55	${ }^{505}$	8.5	8.2	+ 0.3	G ${ }_{\text {A }}$	Go		0.108		
428	22	20.9	84	O	630*	7.3	7.8 7.3	-0.5 +0.6	${ }_{\text {AO }} \mathbf{K}$	Ao		0.019 0.031		
429	22	27.5	84	33	509 513	7.9	7.3 7.2	+0.6 +0.6	\mathbf{K}	Ko	G5	0.104		
430	22	50.1	84	15	513									
431	22	53.5	84 84	50 31			6.0 7.2		\mathbf{K} \mathbf{M}	$\begin{aligned} & \mathrm{K}_{5} \end{aligned}$	K4	$\begin{aligned} & 0.098 \\ & 0.053 \end{aligned}$		
432 433	22	53.5 9.1	84 84 84	31 45	516	8.5 10.4	7.2 10.4	(+1.3 0.0	A8			0.955		
434	23	18.0	84	9	649*	9.9			Ao	A2		0.011		
435	23	34.0	84	37	533	8.3	8.7	- 0.4	${ }^{\text {A }}$			0.039		

8 Zone 85 in B. D.

* Zone 83 in B. D.

Zone 84. - Continued.

No.	a 1900.0		$\delta 1900.0$		$\begin{gathered} \text { B. U. } \\ \text { No. } \end{gathered}$	Int. phot. magn. Greenwich.	Vis. magn. Muller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
436 437	h 23 22	m 39.4 44.0				55 31	536 539	8.4 8.3	7.7 8.0	$\begin{aligned} & +0.7 \\ & +0.3 \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{K}}$	$\begin{aligned} & \text { Ko } \\ & \text { G5 } \end{aligned}$		0.030
ZONE 85.														
438	\bigcirc	56.1	85	55	21	10.5	10.0	+ 0.5	M			0.008		
439	3	21.7 38	85	57	56	9.9	10.2	-0.3	${ }_{\text {Ao }}$			0.003		
440	3	38.4	85	20	57	9.0	8.9	+ 0.1	Fi			0.029		
441	4	4.7	85	38	62	9.1	9.3	- 0.2	AI			0.015		
442	4	5.1	85	17	63	6.9	6.7	+ 0.2	F9	F8	F6	0.034		
443	4	17.5	85	14	64	9.I	8.8	+ 0.3	F 5			0.034		
444	4	32.1	85	29	67	10.2	10.5	-0.3	A6			0.034		
445	4	34.4		59	68	10.3	10.3	0.0	A_{3}			0.026		
446	4	47.9	85	3	$93 \dagger$	9.1	8.3	+ 0.8	K	Ko		0.036		
447	4	56.3	85	50	74	6.7	6.7	+0.0	A6	A5	A_{5}	0.062		
448	4	59.8	85	37	75	8.7	8.3	+ 0.4	Go	G5		0.115		
449	5	6.0	85	10 35	77 78	9.1	9.4 6.8	-0.3 -0.3	B 9 A			0.009		
450	5	9.9	85	35	78	6.5	6.8	-0.3	Ao	Ao		0.029		
451	5	29.9	85	9	80	7.5	6.2	+ 1.3	Go	Ko	K5	0.018		
452	5	34.6	85	16	81	8.4	7.4	+ 1.0	Ko	G5		0.010		
453	5	46.9	85 85	17 7	85 87	9.3	9.7 9.2	+0.4 +0.4	${ }_{\text {A8 }}$			0.164 0.011		
454 455	5	47.6 4.8	85	7 24	87 91	9.6 9.4	9.2 9.8	+ 0.4 +0.4	F 11 A			0.011		
456	6	12.3	85	5	93	9.6	10.3	-0.7	Ao			0.040		
457	6	36.1	85	42	98	9.4	S. 1	+ 1.3	M	Ma		0.008		
458	6	36.3	85	1	99	9.1	9.1	0.0	F5			0.022		
459	6	40.1	85	20	101	9.0	9.2	- 0.2	${ }^{\text {A }}$	Fo		0.022		
460	7	7.5	85	5	107	9.5	9.9	- 0.4	A6			0.030		
461	7	14.0	85	13	108	8.7	10.4	- 0.7	A_{4}			0.017		
462	7	44.2	85	2	118	9.3	9.8	-0.5	Fi			0.075		
463	7	52.4	85	59	113 §	8.1	7.5	+ 0.6	G3	G5	Go	0.044		
464 465	8	8.7 8.8	85 85	34	124 125	9.4 9.7	8.7 9.4	+0.7 +0.3	$\mathrm{G}_{\mathbf{A}}$			0.056		
465	8	8.8	85	7	125	9.7	9.4	+ 0.3	A7			0.012		
466	8	11.1	85	7	126	10.3	10.6	-0.3	${ }^{\text {A2 }}$			0.035		
467	8	21.1	85	3	127	10.0	9.2	+ 0.8	K			0.222		
468	8	25.3	85	24	128	7.7	7.6	+ 0.1	Go	F2	F3	0.141		
469 470	8	38.4 47.0	85 85	9 37	131 1268	9.7 9.0	9.6 7.8	+0.1 $+\quad 1.2$	K0	Ko		0.056 0.040		
471	8	48.3	85	6	132	8.5	8.4	+ 0.1	Fo	Fo		0.038		
472	8	55.3	85	59	1308	10.1	9.7	+ 0.4	F6			0.029		
473	9	19.5	85	32	147	9.3	8.5	+ 0.8	M	K5		0.022		
474	9	42.2	85 85	22	${ }_{152}{ }^{1468}$	10.5	11.0 9.4	-0.5 -0.3	A ${ }_{\text {Ao }}$			0.056		
475	10	2.3	85	56	146 §	9.1	9.4	-0.3	Ao	Ao		0.014		
476	10	4.0	85	47	155	$9 \cdot 3$	8.7	+ 0.6	G2	G5		0.023		
477 ,	10	19.9	85	45	160	8.7	8.5	+ 0.2	F_{1}	Go		0.037		
$478{ }^{\prime}$	10	31.1	85	16	166	9.1	8.1	+ 1.0	Ko	Ko		0.031		
479	10	40.7	85	54	1548	8.5	8.2	+0.3 +0.8	F7	Go		0. 102		
480	11	24.4	85	15	183	8.1	7.3	+ 0.8	G5	Ko	Gr	0.038		

\dagger Zone 84 in B. D.
Zone 86 in B. D.

Zone 85. - Continued.

No.	u 1900.0		$\delta^{8} 1900.0$		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Maller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	m			\bigcirc									"
48 I	1 I	27.3		${ }^{\text {I }}$	184	9.5	9.8	- 0.3	F_{1}			0.052		
482 483	11	38.4 45.0	85	54	1718	9.1	9.2	-0.3	F 4			O.O19		
483 484	11	45.0 6.5	85 85	33 38 3	191 196	8.7 8.6	8.9	- 0.2	F_{2}	F5		0.010		
484 485	12	6.5 20.4	85 85	38 52	196 $180 §$	8.6 8.8	8.9 9.1	-0.3 -0.3	A3 Ao	A3		0.031 0.016		
486	12	44.8	85	59	184§	9.2	9.1		G3					
487	12	53.1	85	15	209	9.4	9.1	+0.1 +0.1	F_{5}			0.122		
488	13	0.5	85	7	213	9.2	9.6	+0.1 -0.4	${ }_{F}{ }^{\text {c }}$			0.050 0.058		
489	13.	32.4	85	47	1938	8.0	8.1	- 0.1	F3	F2	F5	0.058 0.037		
490	13	41.0	85	16	231	10.8	:0.2	+ 0.6	F_{3}		F	0.010		
491	13	42.6	85	46	233	9.1	8.9	+ 0.2	F7	G				
492	13	51.5	85	I	234	8.8	7.9	+ 0.9	G6	Ko	G4	0.037 0.036		
493	14	22.0	85	1	239	9.1	9.3	- 0.2	A_{5}			0.068		
494	14	55.9	8	42	248	8.9	9.1	-0.2	Fo			0.016		
495	15	6.3	85	54	2218	8.0	7.9	+ 0.1	F_{3}	F8		0.055		
496	15	9.2	85	31	249	8.2	7.7	+ 0.5	K_{5}	Ko		0.097		
497 498	15	49.8	85 85	33 26	266	8.8	8.8	0.0	${ }^{\text {A }} 5$	G		0.062		
498	18	27.7	85	26	304	9.2			Fo			0.025		
499 500	19 19	10.6 10.8	8	29 28	320 324	8.9 9.5	9.3 9.5	-0.4 0.0	Ao AI			0.019 0.012		
501	19	13.7	85	4	$431 \dagger$	9.5	9.4	+ 0.1	F			0.008		
502 503 503	19 20	35.7	85	53	330 337	9.2	8.8	+ 0.4	G	G5		0.073		
503 504 50	20 20	3.1	85 85	36	3337	8.7	9.0	-0.3	${ }_{\text {A }}^{5}$	A_{5}		0.040		
504 505	20 20	7.3 10.8	85 85	46 0	339 449	9.6 9.6	9.1 10.4	+0.5 +0.8	F5 A			0.069		
												0.035		
506	20	13.6	85	28	340	9.1	7.8	+ 1.3	K	K2	K	0.012		
307	20	15.6	85	3	$455 \dagger$	9.0	9.4	-0.4	Fo			0.032		
508 509	20	27.2 48.0	85 85	57 40	347 352	9.0	8.6	+ 0.4	G_{3}	G5		0.057		
510	20	50.1	85	18	354	9.0	10.0 7.9	- 0.5 $+\quad 1.1$	$\stackrel{\text { K }}{ }$	Ko		0.021		
511	20	52.1	85	28	355	9.2	9.6	- 0.4	A_{5}					
512	20	59.0	85	11	357	9.2	9.3	-0.1	F_{2}	F8		0.266		
513	21	6.5	85	29	359	8.3	8.7	-0.4	Fo	Fo		0.035		
514	21	23.4	85	15	361 364	9.2	9.6	-0.4	Ao			0.012		
515	21	38.2	85	52	364	9.4	9.8	-0.4	FI			0.061		
516	21	50.9	85	59	367	8.7	9.1	- 0.4	Ao	A		0.036		
517	21	55.3	85	31	370	9.3	9.6	- 0.3	G			0.039		
518	21	55.8	85	26	371	9.1	9.4	- 0.3	Fo			0.034		
519	22	2.1	85	23	376	8.8	8.9	- 0.1	F4	Fo		0.011		
520	22	21.3	85	36	3^{83}	5.3	5.4	- 0.1	Ar	Ao	B8	0.065		
521	22	21.7	85	43	384	7.6	6.7	+ 0.9	K	Ko	Ko	0.045		
522	23	7.3	85	11	523 \dagger	8.3	8.8	-0.5	Fo	F		0.054		
523	23	19.2	85	31	398	9.4	8.7	+ 0.7	Ko	K2		0.042		
524	23	24.4	85	52	399	6.7	6.8	- 0.1	A8 Go	Fo	A6	0.033		
525	23	26.3	85	27	400	8.2	7.7	+ 0.5	G4	G5		0.017		
526	23	30.4	85	38	403	7.0	7.3	- 0.3	A_{2}	A_{5}		0.021		
527	23	50.9	85	21	406	8.5	9.0	-0.5	Ao	Ao		0.020		

\dagger Zone 84 in B. D.
Zone 86 in B. D.

Zone 86.

* Zone 85 in B. D.
f Zone 87 in B. D.

Zone 86. - Continued.

No.	a 1900.0		81900.0		B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Muller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwick.		
			author.	Harvard circular 180.					Yerkes Actinometry.					
	h	m			${ }^{\circ}$									*
576	12	6.9	86	16	177	8.8	8.9	-0.1	A_{5}			0.011		
577		13.9	86	59	1078	6.6	6.5	+ 0.1	Fi	F_{2}	Fo	0.221		
578	12	34.6	86	17	182	7.3	7.4	-0.1	A_{2}	Fo	A_{3}	0.021		
579 580	13	5.8	86 86	46	1178	9.3	9.6	-0.3	Fo			0.055		
580	13	9.7		15	188	10.0	10.2	-0.2	A			0.033		
581	14	30.0	86	3	211	9.0	9.1	-0.1	Fif			0.045		
582	14	49.6	86	22	217	7.8	7.3	+ 0.5	Ko	Ko	G3	0.009		
583	15	9.1	86	17	222	9.3	9.3	0.0	Go			0.097		
584 585	16	20.2 34.8	86 86	3 26	242 244	9.2 8.6			K			0.046 0.034		
585	16	34.8		26	244	8.6	var. 8.7-9.8		B9	Ao		0.034		
586	17	12.1	86	13	256	9.0	8.4	$+0.6$	Ko	G5		0.059		
587	18	4.5	86	37	269	4.5	4.7	-0.2	B9	Ao	B9	0.058		
588	18	13.2	86	48	274	11.0	11.1	- 0.1	Ao			0.031		
589 590	18	40.7 47.7	86 86	$\begin{array}{r}9 \\ \hline\end{array}$	277 282	8.1	9.3 6.6	- 0.2 +1.4	Ao			0.029 0.021		
590	18	47.7	86	35	282	8.0	6.6	+ 1.4	Ko	Ma	M	0.021		
591	19	20.5	86	35	290	9.2	9.3	-0.1	Go			0.045		
592	19	40.9	86	44	297	9.2	9.4	- 0.2	A_{4}			0.017		
593	21	19.6	86	37	319	7.3	7.7	-0.4	Ao	A_{3}	A2	0.019		
594	21	46.4	86	33	$324 * *$	8.3	8.5	-0.2	A^{2}	A2		0.033		
595	21	58.0	86	11	374*	9.9	10.4	-0.5	B9			0.010		
596	22	24.4	86	4	386*	10.2	9.4	+ 0.8	A			0.010		
597	22	37.8	86	1	389*	9.5	9.4	+ 0.1	G8			0.024		
598	22	42.3	86	46	335	7.9	8.3	- 0.4	Ao	Ao		0.008		
599 600	22	43.3 12.6	86	8 15	390**	9.1 9.9	8.6	+ 0.5	G_{A}	G5		0.034 0.021		
601	23	27.5	86	-	401*	7.4	7.4	0.0	F8	F5		0.043		
602	23	27.8	86	45	$344 *$	5.8	5.8	0.0	Fo	Fo	A4	0.080		
603	23	54.8	86	9	409*	6.7	7.0	-0.3	F80	Ao		0.046		
604		57.3	86	29	347	7.8	7.9	- o. 1				0.019		
	ZONE 87.													
605	-	0.3	87	20	220	9.4	9.0	+ 0.4	F	G5		0.025		
606	\bigcirc	7.5	87 87	51	$\stackrel{1}{7}+$	8.9	9.3 9.0	-0.4 -0.0 0.0	$\mathrm{A}_{\mathrm{F} 2}$	A		0.013 0.047		
607 608		27.1 38.9	87	15 17	$7_{5} \dagger$	9.0 9.4	9.0 9.4	0.0 0.0	F_{F}			0.047 0.031		
608 609		38.9 42.8	87	21	7	9.4 9.8	10.1	-0.3	${ }^{\text {A }}$			0.011		
610	-	59.6	87	44	9	8.9	9.0	-0.1	F8	F5		0.017		
611	1	21.4	87	23	13	9.9	9.8	+ 0.1	F			0.068		
612	2	49.9	87	1	$44 \dagger$	9.2	9.3	- 0.1	F8			0.029		
613	2	50.3	87	8	$43{ }^{+}$	9.1	9.4	-0.3	A_{3}			0.055		
614	2	58.5	87	33	26	8.9	9.0	-0.1	F			0.050		
615	3	33.3	87	23	29	10.2	10.4	- 0.2	B9			0.055		
616	3	53.7	87 87	16 42	31 35	9.8 9.2	9.8 9.5	0.0 -0.3				0.013 0.026		
617 918		35.6 9.1	87 87	42 25	35 38	9.2 9.9	9.5 10.1	-0.3 -0.2	Fo			0.026		
619		30.9	87	-	$75 \dagger$	9.3	9.8	-0.5	A_{5}			0.041		
620				20	41	9.3	8.2	+ 0.1	M	Ko		0.023		

[^11]Zone 87. - Continued.

No.	a 1900.0	d 1900.0	B. D. No.	Int. phot. magn. Greenwich.	Vis. magn. Muller and Kron.	Colour Index.	Spectrum			Proper Motion Greenwich.
							author.	Harvard circular 180	Yerkes Actinometry.	
	h m	\bigcirc -								"
62 I	$6 \quad 24.3$	8723	45	9.2	9.4	- 0.2	A			0.016
621	$6 \quad 35 \cdot 5$	8732	46	9.0	8.5	$+0.5$	G	G;		0.048
623	$6 \quad 53.7$	8712	51	6.6	5.2	+ 1.4	K5	Ma	K5	0.063
624	$7 \quad 16.6$	8757	398	9. I	9.4	-0.3	Ao	Fo		0.074
625	826.2	87 15	68	8.8	8.8	0.0	F	Go		0.040
626	827.0	87 I	69	9.5	9.2	+ 0.3	F			0.020
627	$8 \quad 27.2$	8746	67	$9 \cdot 3$	9.7	-0.4	A5			0.032
628	928.0	8734	79	9.2	8.4	+ 0.8	F8	Ko		0.037
629	$9 \quad 38.3$	8745	8 I	9.5			K5			0.135
630	$9 \quad 40.4$	8737	82	9.2	9.4	-0.2	F8			0.052
631	944.0	873	83	8.6	7.7	+ 0.9	Go	G5		0.054
632	104.0	8746	85	9.0	8.3	$+0.7$	Go	Ko		0.034
633	$\begin{cases}11 & 54.3 \\ 11 & 54.6\end{cases}$	8733	100	$\} 8.4$	9.8	-0.4	A_{1}	A2		0.027
	$\left(\begin{array}{ll}11 & 54.6 \\ \text { I2 } & 8.1\end{array}\right.$	87 87	101 104	J 8.1	8.3 8.2	-0.2	$\int^{\prime} \mathrm{F} 8$			0.032
634 635	$\begin{array}{lr}12 & 8.1 \\ 12 & 16.4\end{array}$	$\begin{array}{rr}87 & 29 \\ 87 & 6\end{array}$	108	8.9 9.4	8.2 9.9	+0.7 -0.5	Fo			0.023 0.030
636	12 42.1	$87 \quad 2$	113	9.3	9.7	- 0.4	F 3			0.017
637	1258.1	8712	115	8.8	8.8	0.0	F3	F8		0.077
638	$13 \quad 25.1$	875	122	8.5	8.7	- 0.2	As Go	F_{2}		0.022
639	$13 \quad 34.8$	$87 \quad 1$	124	9.5	9.6	- 0.1	A_{2}			0.010
640	1346.9	8740	127	10.0	10.2	-0.2	A_{2}			0.019
641	$13 \quad 53.6$	8748	$80 \$$	8.9	9.3	- 0.4	A_{2}	Ao		0.012
642	1418.1	8752	$86 \$$	8.7	$9 \cdot 3$	-0.6	B_{9}	B9		0.026
643	$15 \quad 9.3$	8737	143	8.1	7.1	+ 1.0	Ko	Ko	K 5	0.029
644	$15 \quad 27.2$	8723	147	8.3	8.4	- 0.1	F_{5}	F8		0.050
645	$16 \quad 5.5$	8745	151	9.2	9.3	-0.1	F 5	F8		0029
646	$18 \quad 4.4$	8725	169	8.3	8.5	-0.2	$\left.\begin{array}{l}\text { A5 } \\ \mathrm{GO}\end{array}\right]$	Fo		0.022
647	1914.5	8710	180	8.3	8.8	-0.5	Ao	A5		0.029
648	$19 \quad 15.7$	8741	181	8.4	8.7	-0.3	Ao	A_{3}		0.006
649	19533.8	8753 87	185	9.3	9.7	-0.4	${ }_{\mathrm{K}}^{\mathrm{K}}$			0.015
650	$20 \quad 25.1$	$87{ }^{8}$	187	9.0	8.2	+ 0.8	K	K2		0.024
651	$21 \quad 16.4$	878	$318 \dagger$	8.6	8.5	$+0.1$	F	F_{2}		0.046
652	2149.3	8758	199	9.5	10.0	-0.5	Ao F 8			0.031
653	2159	87 19.	201	8.5	8.5	0.0	F6	F8		0.036
654	$22 \quad 22.0$	875	$332 \dagger$	9.1	9.4	-0.3	A6	F2		0.041
655	$22 \quad 24.2$	8734	205	7.3	7.4	-0.1	A	A2	A2	0.042
656	$23 \quad 42.9$	$87 \quad 47$	217	8.8	9.1	-0.3	A_{3}	Ao		0.023
					ZONE	8.				
	0 16.1	8853		8.8	8.2	+0.6 +0.3		Ko		0.008
658	- 59.5	88 88	5	9.4	9.1	+ 0.3	G3			0.048
659 660	$1 \begin{array}{ll}17.4 \\ 1 & 18.1\end{array}$	$\begin{array}{lr}88 \\ 88 & 34\end{array}$	6 $12 *$	10.0 8.9	10.0	0.0 $+\quad 10$	A			0.034
660	1 18.1	883	12*	8.9	7.9	$+1.0$	M	Ko		0.039
661	149.7	88 -	15**	8.1	8.3	- 0.2	Fo	A3		0.050
662	156.1	88 12	16*	9.0	9.1	-0.1	F8	Go		0.063
663	214.2	$88 \quad 42$	9	8.2	8.2 8.8	0.0	Go	Fo		0.060
664	$2 \quad 17.4$	88 88	11	8.8	8.8	-0.0	F8	Go		0.176
665	$2 \quad 42.3$	8834	13	8.8	9.1	-0.3	A8	A		0.038

[^12]Zone 88. - Continued.

[^13]Centre of the Plate $+35^{\circ} 14^{\mathrm{h}} 30 \mathrm{~m}$.

No.	a 1900.0			$\delta 1900.0$		Bonner Durchmusterung			Spectrum author.		
				No.	Zone.	magn.					
	h	m	s			\bigcirc					
1	14	12	46	35	58.1	2468	36	4.8	G		
2	14	13	30	33	43.1	2436	33	7.3	Fo		
3	14	13	51	38	7.3	2541	38	7.5 8.7	${ }_{\text {A }}{ }^{\text {5 }}$		
$\stackrel{4}{5}$	14 14	146	9 41	34 33	40.1	2515 2447	34 33	8.7 8.2	F_{K}		
6	14	16	42	36	51.0	2519	37	7.0	AI		
7	14	18	4	36	5.4	2478	36	8.0	Go		
8	14	18	23	32	53.7	2453	33	9.2	G		
9	14	19	10	34	-0.9	2525	34	8.6	Go		
10	14	19	16	37	18.3	2527	37	8.1	Fo		
11	14	19	20	37	39.6	2528	37	7.2	F6		
12	14	20	15	38	53.0	2762	39	8.6	Ko		
13	14	23	31	33	25.3	2466	33	8.2	A2		
14	14	23	44	35	II.I	2561	35	8.0	F3		
15	14	23	48	36	I. 3	2493	36	7.5	G3		
16	14	24	10	36	38.8	2495	36	6.5	G5		
17	14	25	33	32	14.0	2482	32	6.5	${ }^{\text {B9 }}$		
18	14	26	4	37	36.5	2540	37	7.5	F6		
19	14	28	3	38	45.4	2565	38	2.8	Fo Ao		
	14	28	10	33	30.9	2471	33	8.5			
21	14	29	-	38	48.9	2776	39	9.0	Fo		
22	14	29	17	37	23.8	2545	37	6.8	Go		
23	14	29	31	36	1.4	2505	36	7.3	Go		
24	14	29	55	32	58.6	2474	33	6.8	Go		
25	14	30	30	38	26.4	2570	38	7.5	A_{3}		
26	14	30	35	37	3.8	2551	37	6.2	Ko		
27	14	32	55	34	9.5	2543	34	9.0	G		
28	14	33	4	36	22.1	2509	36	6.5	B9		
29	14	35	4	32	57.8	2482	33	8.3	G5		
30	14	35	22	36	56.2	2559	37	8.1	Go		
31 32	14	36 37	35		42.5 34.3	2551 2579		8.5			
32 33 3	14	37 37	0 0 38	38 35	34.3 40.1	2579 2597	38 35	7.2 8.2	F88		
34	14	37	56	32	20.7	2505	32	8.4	F5		
35	14	38	37	37	10.4	2568	37	6.8	A_{4}		
36	14	40	35	32	33.3	2511	32	7.9	G		
37	14	41	3	33	13.1	2489	33	6.6	M		
38	14	42	18	32	56.5	2491	33	8.2	F7		
39	14	43	20	35	59.3	2530	36	7.5	${ }^{\mathrm{B}} 9$		
40	14	43	48	36	4.6	2531	36	7.5	F7		
41	14	44	47	36	27.7	2533	36	8.4	Go		
42	14	45	2	36	1.1	2535	36	8.4	G		
43	14	45	13	38	12.9	2593	38	6.2	Fo		
44	14	45	23	35	37.1	2614	35	8.3	F5		
45	14	45	53	37	0.7	2578	37	8.4	${ }^{\text {AI }}$		
46	14	46	35	37	40.6	2580	37	5.7	Go		

PLATE 1.
PLATE 2.
(

STELLINGEN.

I.

De sterren met kleine E. B. (althans die van het IIe type) zijn, ceteris paribus, rooder dan die met groote E. B.

Dit effect moet waarschijnlijk meer worden toegeschreven aan een invloed van de absolute magnitude, dan aan selectieve verstrooiing van't licht in de ruimte.

11.

Het bedrag van dit effect neemt toe voor de spectraalklasse in de volgorde A, F, G, K, M.
III.

Dr. Mogendorff's bewering dat de sterren voor meer dan de helft tot type I behooren, geldt alleen voor de heldere. Van de 7^{e} tot de 9^{e} grootte neemt percentsgewijze 't aantal sterren van type II sterk toe.

Zie: „Kosmografie" door Dr. E. E. Mogendorff.
IV.

De voorstelling, die men zich vormt van de verdeeling der sterren in de wereldruimte en de daaruit voortvloeiende z.g.n. structur van het sterrenstelsel is moeilijk vereenigbaar met de opvatting als zouden de sterstroomen zijn te verklaren uit twee van elkaar onafhankelijke sterrenwolken, die thans bezig zijn elkaar te doordringen.

Zie: Rede Prof. 7. C. Kapteyn op 't Genees- en Natuurkundig Congres 191 r.

V.

Het verschijnsel van de twee sterstroomen kan niet verklaard worden uit de excentriciteit van de zon t. o. v. 't zwaartepunt van het sterrenstelsel.
S. Oppenheim, Ueber die Eigenbervegung der Fixsterne (IV Mitteilung).

De methode, volgens welke G. J. Burns de helderheid van den hemel bepaalt, is verwerpelijk.

Astrophysical fournal, Volume XVI blz. 166.
VII.

In het „Handboek der Kosmografie" van Dr. P. H. Schoute wordt 't verschil in middelbare tijd tusschen 2 plaatsen omgezet in sterrentijd, teneinde het lengteverschil tusschen beide plaatsen te vinden.

Dit is onjuist.
VIII.

De wijze waarop Dr. P. Molenbroek de inhoud van een kegelvormige bolsector bepaalt, is uit streng wetenschappelijk oogpunt af te keuren.

Zie: Dr. P. Molenbroek, Leerboek der Meetkunde, $2 e$ deel.

IX.

De constructie van een drievlakshoek uit drie zijner elementen behoort meer thuis in een leerboek over stereometrie dan in een over beschrijvende meetkunde.

X

„Het aantal der eenheden van een hoeveelheid is onafhankelijk van de plaats der eenheden"

Het is niet mogelijk voor deze grondeigenschap der Rekenkunde een bewijs te leveren.
XI.

Met 't oog op de groote vorderingen die de Wis- en Natuurkundige wetenschappen den laatsten tijd gemaakt hebben, is een algeheele reorganisatie van 't Wiskundeonderwijs aan de Gymnasia en de Hoogere Burgerscholen hoog noodig.

XII.

De zoogenaamde ,,afstand van duidelijk zien" heeft noch physische noch physiologische beteekenis; bij de behandeling van loupe en microscoop is dit begrip overbodig.

XIII

Vaihinger's bewering dat de methoden der theoretische natuurkunde slechts fictieve methoden zijn, is niet in overeenstemming met de wijze, waarop hij zelf 't verschil tusschen Hypothese en Fictie definieert.

Hans Vaihinger: Die Philosophie des Alsob.

XIV.

Het Dierkundeboek van Dr. A. Schierbeek en D. Valkema en de daarbij behoorende atlas zijn voor de lagere klassen der scholen, waarvoor het boek bestemd is, uit paedagogisch oogpunt niet aan te bevelen.
XV.

Evenals op de middelbare scholen in Frankrijk, behoort ook ten onzent de zedenleer in de hoogste klassen onderwezen te worden.

[^0]: ∞

[^1]: ${ }^{1}$) G. P. means Publications of the Astronomical Laboratory at Groningen.

[^2]: ${ }^{1}$) On the change of spectrum and color index with distance and absolute brightness, Present state of the question.
 (Contributions from the Mount Wilson Solar Observatory No. 83).

[^3]: ${ }^{1}$) Publications of the Astronomical laboratory at Groningen No. 18.

[^4]: 1) Annals of the Harvard College Vol. 28, Part II.
[^5]: ${ }^{1}$) P. J. van Rhijn's dissertation p. 72.
 2) $\bar{M}=\bar{m}+5 \overline{\log \pi}$.

 As for stars of the same proper motion and apparent magnitude, $\log \pi-\log \pi_{0}$ is distributed in accordance with the law of errors, we have:

 $$
 \overline{\log \pi}=\log \pi_{0}=\log \bar{\pi}+\log e^{-\frac{1}{4 \bmod 2} h^{2}}=\log \bar{\pi}-\frac{5 e^{2}}{0.92 \bmod } .
 $$

 ${ }^{3}$) Harvard-Potsdam $17=-$ om. 16.
 Harvard-Potsdam (Muller and Kron) $=-0.25$ (see Introduction).

[^6]: ${ }^{1}$) J. C. Kapteyn, Contributions Mi. Wilson Observatory No. 42, p, 10, 1909.

[^7]: ${ }^{1)}$ Contributions from the Mount Wilson Solar Observatory No. 89.

[^8]: \dagger Zone 81 in B. D.

 - Zone 79 in B. D.

[^9]: \dagger Zone 82 in B. D.

 * Zone 80 in B. D.

[^10]: * Zone 84 in B. D.
 \dagger Zone 82 in B. D.

[^11]: 8_{*}^{8} Zone 87 in B. D.
 Zone 85 in B. D.

[^12]: + Zonc 86 in B. D.
 8 Zone 88 in B. D.
 * Zone 87 in B. D.

[^13]: * Zone 87 in B. D.
 \dagger Zone 89 in B. D.
 Zone 88 in B. D.

