

Cornell University Library Ithaca, New Yock

FROM

University of Groningen in Exchange

Cornell University Library QB 883.B89 1920

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924012323790

DETERMINATION AND DISCUSSION OF THE SPECTRAL CLASSES OF 700 STARS MOSTLY NEAR THE NORTH POLE

PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE WIS- EN STERRENKUNDE AAN DE RIJKS-UNIVERSITEIT TE GRONINGEN, OP GEZAG VAN DEN RECTOR-MAGNIFICUS A. KLEIN, HOOGLEERAAR IN DE FACULTEIT DER GENEESKUNDE, TEGEN DE BEDENKINGEN VAN DE FACULTEIT DER WIS- EN NATUURKUNDE TE VERDEDIGEN OP DONDERDAG 24 JUNI DES NAM. TE 3 UUR

DOOR

GERRIT HENDRIK TEN BRUGGEN CATE, GEBOREN TE LEEUWARDEN.

GEBROEDERS HOITSEMA — 1920 — GRONINGEN.

AAN MIJNE OUDERS EN MIJNE VROUW.

.

Aan de Heeren Hoogleeraren in de Faculteit der Wis- en Natuurkunde aan de Universiteiten te Leiden en te Groningen betuig ik mijn hartelijken dank voor het genoten onderwijs.

In het bijzonder ben ik dank verschuldigd aan U. Hooggeleerde KAPTEYN, Hooggeachte Promotor. Al heb ik niet het voorrecht gehad, Uwe lessen te volgen, Uwe geschriften en Uwe raadgevingen zijn mij een wegwijzer geweest tot samenstelling van dit proefschrift. 1k reken 't mij tot een eer dat Gij met groote bereidwilligheid het manuscript hebt willen doorlezen en van Uwe opmerkingen hebt willen voorzien.

Hooggeschatte BONNEMA. Ik kan niet nalaten op deze plaats te vermelden de groote belangstelling die Gij voor mij gekoesterd hebt vanaf 't oogenblik, dat ik leerling van 't Leeuwarder Gymnasium werd. Uwe hooggewaardeerde lessen, die bij Uwe leerlingen de liefde voor de Natuurwetenschappen opwekten en die zoozeer van invloed zijn geweest op de keuze van mijn studievak, zullen steeds bij mij in dankbare herinnering blijven.

Waarde VAN RHIJN. Wanneer dit geschrift éénige waarde heeft, dan zal dat zeker in niet geringe mate zijn te danken aan de wijze, waarop Gij mij steeds met raad en daad hebt terzijde gestaan. Wees overtuigd van mijn welgemeende gevoelens van blijvende erkentelijkheid.

TABLE OF CONTENTS.

	Page
troduction	I
HAPTER I. CLASSIFICATION OF THE SPECTRA OF STARS	4
I. Description of the method	4
2. Probable error of spectral classification	7
3. The distribution of the spectra	9
4. Correction for observation error	10
HAPTER II. THE DISTRIBUTION OF THE SPECTRA AMONG STARS OF DIFFERENT MAGNITUDES	II
HAPTER III. ON THE CHANGE OF COLOUR INDEX WITH ABSOLUTE AND APPARENT MAGNITUDE	15
I. General outline of the method	15
2. Solution of b	16
3. Solution of c	2 0
4. Values of b and c	23
5. Discussion of the results	24
6. Summary of results	25
xplanation of the tables and plates	28
bles	29
ates	45

INTRODUCTION.

In the present paper I have collected the results of my attempts to classify the spectra of a 700 stars, photographed by Dr. F. ZERNIKE (formerly assistant of the Laboratory at Groningen) with the 6 inch refractor at Potsdam in the year 1914. He has chosen five regions, the centres of which are given further on in table 2.

Each side of a plate is 20 cM., and the focallength of the instrument being 1494 mM., 1 mM. corresponds with 2'.30, so that the plate contains an area of $460' \times 460' = 59.29$ square degrees.

All the plates together cover a region of 192 square degrees with 700 stars, so that there are on the average 3.6 stars per square degree. Consequently our list contains, according to the *Publications of the Astronomical Laboratory at Groningen* No. 27, the stars to about 9,5 photographic magnitude of the Harvard scale (*Harvard Annals* 7:). The reason why Dr. ZERNIKE has taken the regions in the neighbourhood of the pole is, that all the stars of his plates are to be found in the Astrographic catalogue 1900 Greenwich section, Volume III.

Further he has taken the plate at Declination $+ 35^{\circ}$, because, as appears from the General eatalogue in the G. P 19 (Area IX)¹) this are a contains many stars with great proper motion. Unfortunately the two plates with spectra of large dispersion contain but four stars out of the above-said catalogue, because the spectra on the plate do not go beyond the $8^{m}.5$ (Bonner Durchmusterung). The classification of the spectra of the third plate (small dispersion) is impossible. It has been much overexposed It may suffice to give a list of these spectra without discussing the material. It is contained in the list at the end of the paper which gives the whole of our results. In every zone the stars are arranged in the order of increasing Right-Ascension. The second and third columns give the places of the stars from the above mentioned Astrographic catalogue. The fifth column (phot. magn.) is also taken from this catalogue are based on the scale of Pickerings North Polar

¹⁾ G. P. means Publications of the Astronomical Laboratory at Groningen.

sequence (Harvard circular 170) and they must be reduced to the scale of H. A. 71, part 3. In G. P. 27, table 11, I find

H. A.
$$7I - H. C. 170 = +0^{m.1}$$

for stars between 5^m.5 and 10^m.5.

The sixth column contains the visual magnitudes. They have been determined by Messrs. Muller and Kron at Potsdam on the Potsdam-scale. They are still unpublished, but have been courteously communicated by the authors.

I have compared these magnitudes with those of H. A. 70 and 54. The result, derived from a great number of stars, is:

Table 1.

magn	< 8.0	8. o – 8 9	9.09.9	> 9.9
Harvard—Potsdam	— O. I	0,2	0.3	0.4

The seventh column gives the colour-Index, i. e. phot. magn. H. A. 71 – vis. magn. Potsdam.

The three following columns contain the spectra of the stars; next to those, determined by the author of this paper, the spectra taken from H. C. 180 and *Yerkes Actinometry* are shown. The spectrum of many stars has been determined on different plates. If that was the the case I have taken the mean of all the determinations, the results of which are found in the eighth column.

In the last column the reader will find the total proper motion. I have found $\mu_{\alpha} \cos \delta$ and μ_{δ} in a manuscript, kindly communicated by the Astronomer Royal at Greenwich.

In Chapter II and III I have given due attention to the two phenomena mentioned by Professor KAPTEYN 1 :

1) On the average the apparently fainter stars are redder than the brighter ones.

2) Apparent magnitude and spectral lines being the same, the stars are on the average redder the farther away they are.

For the phenomenon (1) Professor KAPTEYN gives the three following possible explanations:

3) Predominance of the later spectral types among the fainter stars.

4) An influence of the absolute brightness on the color index.

5) Selective absorption of light in space.

For the phenomenon (2) there are only the two explanations (4) and (5)

¹⁾ On the change of spectrum and color index with distance and absolute brightness, Present state of the question.

⁽Contributions from the Mount Wilson Solar Observatory No. 83).

Therefore the complete equation for the colour index for stars of determined spectrum is:

$$C. I. = a + bm + cM + dR,$$

where a, b, c and d are constants, m the apparent magnitude, M the absolute magnitude and R the distance.

I think we can take d to be practically zero, mainly because SHAPLEY has found white stars in the globular clusters.

We thus drop the explanation (5).

The data we need are:

1) The photographic and visual magnitude i. e. the colour;

2) The spectral type;

3) The parallax of certain groups of stars.

The parallax is required for the determination of M and is found in G. P. No. 8¹).

To solve b in the equation

$$C. I. = a + bm + cM$$

we must take groups of stars with the same M, but with different m, and to solve c, we take groups of stars with the same m, but with different M.

¹⁾ Mean parallax of stars of determined proper motion and magnitude.

CHAPTER I.

CLASSIFICATION OF THE SPECTRA OF STARS.

1. Description of the method.

In this chapter I will describe the method and give the results of a spectral classification, depending on the relative intensities of some spectral lines. As was said in the introduction the determined spectra were photographed by Dr. ZERNIKE. He has used two kinds of objective prisms: one with small dispersion (the spectra got in this manner I will call P_1 and the other with large dispersion P_2).

In both cases the spectrum extends from H_{γ} ($\lambda = 4341$) to H_{κ} (3750) in the early types and from the G-band to K (3934) in the later types.

The distance from H_{γ} to K is for $P_1 = 0.8$ mM, and for $P_2 = 3.7$ mM.

According to the "Publications of the Astronomical Laboratory at Groningen No. 27" we can compute the photographic magnitude to which the determined spectra extend.

In the following table are given the results for all the plates.

Centre of the Plate.	Galactic latitude ¹).	Dispersion.	Exposure.	Number of Plates.	Number of stars.	Number per square degree.	Intern. phot. lim. magn.
Pole	27°	Pr	Ih	I	135	2.3	9.2
Pole	27°	P2	2^{h}	I	89	1.5	8.8
85° б ^h 30 ^m	27 ⁰	Pı	1 ^h	3	220	3.7	9.6
85° 6h 30m	27°	P2	$2^{\rm h}$	3	80	1.3	8.6
84° 12h 30m	33°	Рг	1 ^h	2	I 20	2.0	9.2
84° 12h 30m	33°	P2	2^{h}	2	46	0.8	8.2
84° 21 ^h 30 ^m	33°	Рг	rh	2	200	3.4	9.6
84° 21 ^h 30 ^m	33°	P2	2^{h}	3	90	1.5	8.9
35° 14 ^h 35 ^m	70°	P2	2 ^h	2	46	0.8	8.7

Table 2.

1) Publications of the Astronomical laboratory at Groningen No. 18.

As was already mentioned, there is one plate P1 (exposure 2 hours) for which the determination of the spectra is impossible.

As for the last column of table 2, attention must be paid to the fact, that the plates contain many stars between $9^{m}.6$ and $70^{m}.5$. Of course, the lim magn. is not quite the same for the several spectral classes.

Method of classification. In the spectrum of a star pairs of lines were selected not far from one another and their relative intensities were estimated. For P1 two pairs of lines were selected, for P2 three. I have constructed a normal curve for each pair, the abscissa of each point representing the spectrum, the ordinate the relative intensities.

I have adopted the Harvard-scale of classification ¹). Each of the classes A, F, G and K is subdivided into 10 subdivisions A0, A1, A2.... A9, F0 etc.

The subdivisions Ma and Mb were dropped. I have written down M at the appearance of flutings (due to titanium-oxyde) and a great intensity of the line $\lambda = 4227$.

As for the B stars I could only estimate B8 and B9 by the aid of the chosen lines; only a few stars contained helium-lines ($\lambda = 4010$ and $\lambda = 4026$).

With the available spectra this is about all that proved to be feasible.

The estimates were made on an arbitrary scale, extending from o to 10, in the same way as is done in the *Stufenmethode* of ARGELANDER for the estimates of variable stars. Hence, my numbers are approximately proportional to the logarithms of the intensity differences of two lines. I have noted o, when there was no difference between the lines, 1 at the smallest difference in intensities that could be discovered, 10 when one of the lines was only just visible.

I have used the following pairs of lines (H is the compound line H and H_s):

P2:
$$\frac{H_{\delta}}{K}$$
, $\frac{H}{K}$ and $\frac{H}{H_{\delta}}$.

In the first two cases a line decreasing in intensity with advancing type $(H_{\delta} \text{ and } H)$ has been combined with a line increasing in intensity with advancing type. $\frac{H_{\delta}}{K}$ en $\frac{H}{K}$ give a descending curve, $\frac{H}{H_{\delta}}$ an ascending curve (see the figures at the end of the paper).

PI: $\frac{H}{K}$ and $\frac{H}{H_{\zeta}}$. The first gives a descending, the second an ascending curve. I have constructed the curves in the following way:

¹⁾ Annals of the Harvard College Vol. 28, Part II.

CHAPTER I.

On one of the best plates (P2) I have chosen the finest spectra and then determined the intensity-differences of each pair of lines. These I have compared with the spectral classes given in H. C. 180. In this manner I obtained many points, which determined the curve. In the same way I did with P1.

From F2 to K5 there is in reality no important change in the ratio $\frac{H}{K}$, as may be seen in the same curve for P2 and in H. A. 28, part II. Notwithstanding this the ordinate in my curve for P1 shows a regular decrease for the same interval.

A possible explanation is, that owing to the smaller dispersion, several lines, variable with the spectrum, well separated in the P₂ plates, have coalesced.

I regret that as yet I have found no occasion to investigate the phenomenon more closely.

The K-line has the appearance of a large , band". I think there will be no objection against calling this band K.

That there is no doubt, that the curve is useful, is obvious in the average difference (paying no attention to the sign) between my estimates and those of *Harvard* or *Yerkes Actinometry* (of course made on the spectra from F_2 to K_5). This average difference is 0.4 spectral class. I find an average difference of 0.3 class between *all* my estimated spectra and Harvard or Yerkes.

I have therefore no reason to suppose that the curve $\frac{H}{K}(P_1)$ below F₂ is not real. It is however a very curious phenomenon.

In order to show that my scale of classification is identical with the Harvardscale, I give here a list, taken from H. A. 28, Part I, containing the intensities of the lines used in the present paper

Spectral class.	B8	Ao	F5	Go	Ко	Ma
Hζ	65	62.5	16	8		
K	5	10	135	160	200	170
$H + H_{\varepsilon}$	70	70	100	120	170	140
${ m H}_{\delta}$	65	62.5	16	10	6	4
				1		

Table 3.INTENSITIES (CANNON).

If I suppose the light-ratio between two lines, for an intensity difference of one *grade* to be x and if we call m_1 and m_2 the intensities of these lines expressed in magnitudes, then we have according to my curves and the preceding table:

Table 4.

P2 for $\frac{H_{\delta}}{K}$: $x^{6} = 6.25$ (Ao) therefore log x = 0.13 $x^{8} = 8.44$ (F5) ,, log x = 0.11 $x^{9} = 16.00$ (Go) ,, log x = 0.13 $x^{10} = 13.00$ (B8) ,, log x = 0.11 $\frac{H}{K}$: $x^{7} = 7.00$ (Ao) ,, log x = 0.12 $\frac{H}{H_{\delta}}$: $x^{7} = 6.25$ (F5) ,, log x = 0.12 $\frac{H}{H_{\delta}}$: $x^{7} = 6.25$ (F5) ,, log x = 0.12mean log x = 0.12mean log x = 0.12Therefore 0.12 = 0.4 ($m_{2} - m_{1}$) $m_{2} - m_{1} = 0.3$. PI for $\frac{H}{K}$: $x^{10} = 7.00$ (Ao) therefore log x = 0.08 $x^{2} = 1.35$ (F5) ,, log x = 0.07 $\frac{H}{H_{\zeta}}$: $x^{10} = 6.25$ (F5) ,, log x = 0.08mean log x = 0.08Therefore 0.08 = 0.4 ($m_{2} - m_{1}$) $m_{2} - m_{1} = 0.2$.

By comparison with H. C. 180 I find the following systematic difference: H. C. 180 — ten Bruggencate = + 0.14 class.

2. Probable error of spectral classification.

From one of the plates (P1) I have taken the differences \varDelta between two estimates $\left(\frac{H}{K} \text{ and } \frac{H}{H_{\zeta}}\right)$ made on the same star, expressed in one subdivision as unit. I find:

Δ	observed number	computed number
0 I 2 3 4 5 6	$ \begin{array}{c} 20\\ 6\\ 10\\ 10\\ 10\\ 1 \end{array} $ $ \begin{array}{c} 20\\ 10\\ 1 \end{array} $ $ \begin{array}{c} 11\\ 0\\ 57\end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 5.

Accepting the error curve we get:

p. e. of a difference = 1.50.

p. e. of one estimate = 1.06.

p, e. of mean of 2 estimates = 0.75.

For the modulus h of the error curve we find the value 0.30

As far as can be judged from so small of number of observations the distribution agrees tolerably with the distribution of accidental errors.

The last column shows the distribution in the supposition that the number of differences $\Delta = 0$ is equal to the number between -6.5 and +0.5, that the number of differences $\Delta = 1$ is equal to the sum of the number between -1.5 and -0.5 and between +0.5 and +1.5 and so on.

I have treated exactly in the same manner a second plate (P1) Here I find for the p. e. of the mean of 2 estimates the value ± 0.53 and for the number of differences:

			2.2.2
4	1	observed number	computed number
0 1 2 3 4		$ \begin{array}{c} 3^{\mathbf{I}} \\ 9 \\ \mathbf{I}^{\mathbf{I}} \\ 4 \\ \mathbf{I}^{\mathbf{I}} \\ I$	$ \begin{array}{c} 14\\24\\38\\17\\8\\25\\4\\4\\5\end{array} $
5			

Table '6.

The irregularities in the numbers of the tables 5 and 6 must be the consequence of my preference for estimating the spectrum rather in one division than in another one. Therefore some divisions will extend over a larger interval than one tenth of a spectral class, whereas others will cover less than a tenth.

Taking two consecutive intervals the theoretical and observed numbers agree tolerably well.

For the greater dispersion plates (P2) the results are still better. I find for one of the plates for the p. e. of the mean of 2 estimates the value \pm 0.38 and for the number of differences \varDelta :

Δ	observed number	computed number
0 1 2 3 4	$ \begin{array}{c} 31\\12\\43\\\\8\\4\\15\\\\\underline{3}\\58\end{array} \end{array} $	$ \begin{array}{c} 16 \\ 24 \\ 13 \\ 4 \\ 17 \\ 1 \\ 58 \\ \end{array} $

Table	7.
-------	----

Furtheron an average value of the probable error will be required. As even a very rough estimate will be sufficient for our purpose I assumed as the p. e. of a spectrum on a simple plate the value

p. e. = \pm 0.55 subdivision.

This result represents the mean accuracy of our measures. The accuracy, however differs pretty considerably for the several spectral classes. In general, the determination of an A star was easier than of a F - M star.

3. The distribution of the spectra,

As was to be expected from the irregularities in the numbers (Tables 5, 6 and 7), we find irregularities in the observed numbers as is shown by the following table:

Spectrum	Number of stars	Spectrum	Number of stars	(Spectrum	Number of stars	Spectrum	Number of stars
A F G K M	19 24 27 39 14	B8 and B9 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 F0 F1 F2	20 69 20 42 30 17 25 17 8 9 4 20 52 12	F3 F4 F5 F6 F7 F8 F9 G0 G1 G2 G3 G4 G5 G6	15 8 25 7 4 19 3 26 2 3 23 3 17 5	G7 G8 G9 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9	2 5 0 39 0 1 0 6 0 0 0

Т	a	b	le	8	
•	~		~	~	•

CHAPTER I.

In the first column I have brought together the stars, for which the subdivision of the spectrum was not to be determined. When I take together all stars of each class, I find:

Table 9

Number	of	A-stars:	260
,,	,,	F- "	195
• •	,,	G- "	113
,,	,,	K- ,,	89
**	"	M- ,,	14.

A somewhat similar behaviour is shown by the stars in the *Yerkes Actinometry*. In other catalogues, where the magnitudes are visual, the K-stars are found in much greater number than the F- and G stars.

Probably the apparent contradiction must be explained by the fact, that, as we have admitted all measurable spectra, the limit in visual magnitude for the K-stars is not nearly so faint as that for the F- and G-stars.

4. Correction for observation error.

Supposing the deviations of the true spectrum X are distributed according to the law of errors, we can compute which fraction of the observed number of X really belongs to this subdivision, and which fraction belongs to $X \pm 1$, $X \pm 2$ etc. We are not far from the truth in assuming for the p. e. r of an estimated spectrum the value ± 0.55 (see page 9).

Ta	ble	IO.
----	-----	-----

MIXTURE OF SPECTRAL CLASSES IN WHAT HAS BEEN OBSERVED AS SPECTRUM X ($r = \pm 0.55$).

Spectrum	Fraction
X $X \pm 1$ $X \pm 2$ $X \pm 3$	0.457 0.238 0.032 0.001

The meaning of this table is, that of the stars observed as belonging, say, to A₅, the fraction 0.457 belongs really to this class, the fraction 0.238 belongs to A₄ and another equal fraction to A₆. Similarly the fraction 0.032 belongs to A₃ and another equal fraction to A₇.

CHAPTER II.

THE DISTRIBUTION OF THE SPECTRA AMONG STARS OF DIFFERENT MAGNITUDES.

It is of course important to examine whether the proportion of the stars of the first and the second type varies with apparent magnitude. Especially the question arises whether the later type stars predominate among the fainter ones.

It appears that, comparing bright and faint stars of the same spectrum and absolute magnitude, the average colour index of the faint stars is different from that of the brighter ones, a phenomenon, which must be due to an error in the photographic or the visual scale. Consequently, an investigation of the relative frequency of the several spectral classes among the stars of the fainter magnitudes is necessary.

As a small contribution to such an investigation I have examined the stars of the end of the paper and some other sources. The difficulty is, to determine to which magnitude the stars of the different regions are complete. I have used two methods in order to investigate this point.

In the first place I have determined the proportions of the number of stars between fixed limits of photographic magnitudes, both from G. P. 27 and from my list.

For the stars from my list I find, denoting $N_{7.8}^{8.2}$ the number of stars from magnitude 7.8 to magnitude 8.2 and so on:

$\frac{N\frac{8.7}{8.3}}{N\frac{8.2}{7.8}} = 1.55$	$\frac{N\frac{8.9}{8.5}}{N\frac{8.4}{8.0}} = 1.73$	$\frac{N\frac{9.1}{8.7}}{N\frac{8.6}{8.2}} = 1.98$	$\frac{N\frac{9.3}{8.9}}{N\frac{8.8}{8.4}} = 1.80$
$\frac{N\frac{8.8}{8.4}}{N\frac{8.3}{7.9}} = 1.55$	$\frac{N\frac{9.0}{8.6}}{N\frac{8.5}{8.1}} = 1.75$	$\frac{N\frac{9.2}{8.8}}{N\frac{8.7}{8.3}} = 1.90$	$\frac{N_{9.0}^{9.4}}{N_{8.5}^{8.9}} = 1.53$

Table 11.

For all the quotients I find in G. P. 27 the value 1.74.

From
$$\frac{N_{8.7}^{9.1}}{N_{8.2}^{8.6}}$$
 to $\frac{N_{8.8}^{9.2}}{N_{8.3}^{8.7}}$ there is a decrease. Therefore I assume that my list is

complete up to and including magnitude 9.1.

In the second place I have determined the number of stars included in *the* Astrographic catalogue 1900, Greenwich section, volume III, and missing in my list. For the zones 80 to 88, the result is as follows:

Magnitudes (phot.)	Total number of stars (in the Greenwich catalogue)	Number of stars, missing in my list
6.0—6.9	28	3
7.0-7.4	24	I
7.5-7.9	35	3
80	8	ο
8 1	13	I
8.2	13	о
8.3	I 5	о
8.4	12	I
8.5	20	3
8.6	17	2
8.7	24	1
8,8	22	2
8.9	26	3
9.0	34	3
9.1	32	2
9.2	35	8
9.3	5 5	21
9.4	45	23

Table 12.

That there is a certain number of brighter stars missing need no surprise. There are stars for which I found it impossible to assign the spectral class. The *Greenwich catalogue* is complete up to

į

photographic	magnitude	9. 0	for	the	В	stars
**	,,	9.2	,,	,,	Α	stars
,,	"	10.2	,,	"	K	stars.

I 2

I conclude that we may consider my list to be complete up to and including magnitude 9.1.

I have included in my examination not only the spectra from my list but also from *Harvard Circular* 180 in which the spectra are complete to 8^{m} .2 (photogr.).

In H. C. 180 and in my list there are but few stars brighter than the seventh magnitude. Therefore I have completed my results with those from Harvard Annals Volume L (Revised Harvard photometry) and with the results, kindly sent to me by Dr. VAN RHIJN of the Boss-stars, the spectra of which are taken from H. A. 28, 56 and — in some cases — 50.

Harvard Annals 50 contains all the stars of visual magnitude 6^{m} .5 and brighter, therefore photographically up to different magnitudes, depending on the spectrum in accordance with the values of the colourindices in the following table:

BoB5A0A5F0F5G0G5K0K5MColour Index-0.24-0.120.00+0.14+0.28+0.42+0.56+0.78+1.00+1.18+1.35Thus: The B-stars from H. A. 50 extend to photogr. magn. 6.5

,,	A- "	,,	,,	,,	,,	"	,,	6.7
	F- "							
	G- ,,							
	K- ,,							
	М- "							

We must therefore diminish the number of A-stars with the number lying between $6^{m}.7$ and $6^{m}.4$. According to G. P. 27, page 60, the proportion Number of stars from B to $6^{m}.50$ is equal to $\frac{126}{159}$.

Now in *H*. *A*, 50 there are 2973 A-stars down to 6^{m} .7 (phothogr.). Therefore the number of A-stars down to 6^{m} .5 (photogr.) = $\frac{126}{159} \times 2973 = 2360$.

In the same manner I have computed the number of F, G, K and M-stars, down to 6^{m} .5 (photogr.). The number of B-stars remains the same.

Number to 6^m.5 (photogr.) Number in H. A. 50 Spectrum 865 865 B 2360 A F G K 2973 674 1171 353 973 546 2327 396 Μ 74

Table 13.

CHAPTER II.

The final results are:

Table 14

RELATIVE	FREQUENCY	OF	THE	SEVERAL	STECTRA	L CLASSES	AMONG	THE	STARS	OF
	E	1FF	EREN	т рнотос	RAPHIC 1	MAGNITUD	ES.			

Region	Galactic latitude -20° to -40° and $+20^{\circ}$ to $+40^{\circ}$		Whole sky	Circumpolar stars with 10° from the North Po (Galactic latitude + 25° to -		h Pole
Catalogue	В	DSS	H. A. 50	H. C. 180 a	and Author	Author
Photogr. magn.	< 3.50	3.50-5.49	< 6.5	5.1-7.0	7.1—8.0	8.1-9.1
	Fraction	Fraction	Fraction	Fraction	Fraction	Fraction
Spectrum B	0.39	0.30	0.18	0,06	0.06	0.01
A	0.32	0.37	0.49	0.54	0.32	0.32
F	0.11	0.12	0.14	0.17	0.25	0.30
G	0.00	0.07	0.07	0.06	0.21	0.21
K	0.18	0.11	0.11	0.17	0.15	0.15
М	0.00	0.02	0.02	0.01	0.01	0.01
Total Number of stars	28	380	4872	71	143	221

From this table we draw the following conclusions:

The number of B-stars decreases with decreasing brightness.

The number of A-stars increases down to 7^{m} .0 but for fainter stars there is a strong decrease.

The number of F stars increases with decreasing brightness.

The number of G-stars is constant down to 7^m.0, but then there is a large increase.

The number of K- and M-stars seems to remain rather constant down to 9^m. I. The following table gives the relative numbers of the first (B and A) and second type (F, G and K) stars.

Table 15.Photogr. magn.< 3.503.50-5.49< 6.55.1-7.07.1-8.08.1-9.1Type I2.502.272.051.500.620.49Conclusion: The quotient Type IType IIdecreases with decreasing brightness.

14

CHAPTER III.

ON THE CHANGE OF COLOUR INDEX WITH ABSOLUTE AND APPARENT MAGNITUDE.

I. General outline of the method.

As is stated in the introduction, we must solve the equation

$$C_{-}I_{-}=a+bm+cM,$$

in order to investigate the change of C. I with absolute magnitude, spectral type being the same. Owing to the scale error, treated above, the C. I. will also depend on the apparent magnitude; without this error δ would be zero. The all important question however is the determination of c, i. e. the increase of the C. I per unit of absolute magnitude.

The unknowns b and c have been solved in two steps:

In the first place I divided the stars of every spectral division into two or three groups according to their apparent magnitude. Every group gives an equation of the form:

$$\overline{\mathrm{C. I.}} = a + b\overline{m} + c\overline{\mathrm{M}}$$

where a dash over a letter denotes the mean of the quantities, defined by those letters for the stars of a group.

From these equations we find

$$b = p + qc$$
.

The coefficients p and q may be computed from our data; q will be small, if the mean absolute magnitudes of the different groups are approximately equal.

In the second place I divided the stars of every spectral division into groups according to their absolute magnitude. I thus found c as a function of b:

$$c = r + sb$$
,

where s will be probably a small quantity. For every spectral division the unknowns b and c are solved from the two equations

$$b = p + qc$$

$$c = r + sb.$$

CHAPTER III.

For the solution of the above-mentioned equations I have used the stars from my lists at the end of this paper and the stars from *Harvard Circular* 180. As was said in the Introduction, the visual magnitudes are determined by Messrs. KRON and MULLER at Potsdam.

The absolute magnitude M, i. e. the apparent magnitude at the distance of one parsec ($\pi = 1''$), is a function of the apparent magnitude and distance; they are connected by the relation

$$M = m + 5 \log \pi$$

I have calculated for every star the absolute magnitude by means of the formula

$$M = m + 5 \log \overline{n} - \frac{5\ell^2}{0.92 \text{ mod.}}^{1}$$

where $\overline{\pi}$ = mean parallax of stars of determined proper motion and magnitude and ρ = probable error of the error curve

$$z = \log \frac{\pi}{\pi_0}$$

 π being the true parallax of a star and π_0 the most probable parallax of stars of the same magnitude and proper motion ²).

We can find \overline{n} in Table G in the G. P. 8. The photometric magnitudes in this Table are based on the Potsdam scale. Adopting the scale of Müller and Kron, we have to diminish the visual magnitudes in my lists by an amount of o^{m} .1³), in order to compute \overline{n} .

According to G. P. 8 the value of ρ is equal to 0.19; therefore

$$\frac{5\ell^2}{0.92 \mod .} = 0.46.$$

2. Solution of **b**.

As some of the spectral divisions do not contain a sufficient number of stars to give a reliable result for the unknowns, the stars of these divisions were

$$\overline{\log \pi} = \log \pi_0 = \log \pi + \log e^{-\frac{1}{4 \mod 2h^2}} = \log \pi - \frac{5e^2}{0.92 \mod 6}.$$

³) Harvard-Potsdam $17 = -0^{m}.16$.

Harvard-Potsdam (Müller and Kron) = -0.25 (see Introduction).

16

¹⁾ P. J. VAN RHIJN's dissertation p. 72.

²⁾ $\overline{\mathbf{M}} = \overline{m} + 5 \overline{\log \pi}$.

As for stars of the same proper motion and apparent magnitude, $\log \pi - \log \pi_0$ is distributed in accordance with the law of errors, we have:

combined with those of other divisions into a single group. This was done, for instance, for the A9 and A8 stars. The colour-indices of the A 9 stars were diminished by $0^{m}.04$, i. e. the average difference between the mean colour-indices of two successive spectral divisions. Moreover the absolute magnitudes of the A9-stars were diminished by $0^{m}.10$, a value derived from a smooth curve, which was drawn through the plotted points, representing the mean absolute magnitude as a function of the spectral type. It must be noted, that this curve has a maximum at F5.

In the same way the quantities of the A7-stars, changing systematically with the spectral type have been reduced to what they would have been, had the stars been of the A8 type.

The following table gives the spectral divisions which were combined into a single group:

Spectral divisions combined into a single group	C. I. en M. reduced to:	Number of stars.
B8 and B9	B9	16
Ao	Ao	76
Aı	Aı	19
A2	A2	57
A3	A3	36
A4	A4	16
A5	A5	36
A6	A6	14
A7, A8 and A9	A8	20
Fo	Fo	39
Fı	F1	46
F2	F2	20
F3 and F4	F3	20
F5 and 6	F5	49
F7. F8 and F9	F8	51
Go, GI and G2	Go	45
G3 and G4	G3	24
G5. G6, G7 en G8	G5	бо
Ko	Ko	78
K2, K3 and K5	K5	23
М	М	13

Table 16.

There are no stars belonging to G9, K_1 , K_4 , K_6 to K9. We first divide the stars of a certain group into two or three subgroups, according to their apparent magnitude. The stars with a very large or a very small absolute magnitude were omitted, in order to make the mean absolute magnitudes of the subgroups of stars of different apparent magnitude as equal as possible.

Every sub-group gives an equation of condition, which was written in the form

$$a + b (m - 9.00) = C. I. - c (M + 3.00).$$

The resulting equations of condition of this form are given in:

Spectrum	Limits of magnitude	Equations of condition for the unknown b	Number of stars
В	≦ 8.9	a - 1.89b = -0.39 + 1.26c	7
	≧ 9.0	a + 0.79b = -0.33 + 0.21c	9
Ao	≦ 8.9	a - 1.41b = -0.32 + 0.75c	26
	9.0 to 9.9	a + 0.44b = -0.25 + 0.36c	26
	≧ 10.0	a + 1.96b = -0.35 + 0.08c	іб
Аі	≦ 8.9	a - 1.73b = -0.14 + 0.85c	8
	≧ 9.0	a + 0.58b = -0.34 + 0.36c	II
A2	≦ 8.9	a - 1.11b = -0.19 + 0.72c	27
	≧ 9.0	a + 0.74b = -0.38 + 0.24c	24
A3	≦ 8.9	a - 0.92b = -0.20 + 0.44c	12
	9.0 to 9.9	a + 0.36b = -0.15 + 0.17c	10
	≧ 10.0	a + 1.29b = -0.17 - 0.29c	7
A4	≦ 8.9	a - 1.28b = -0.12 + 0.53c	5
	≧ 9.0	a + 0.64b = -0.38 + 0.10c	9
A5	≦ 8.9	a - 0.61b = -0.17 - 0.32c	13
	≧ 9.0	a + 0.52b = -0.21 - 0.39c	18
A6	≦ 9.5	a - 0.27b = -0.08 - 0.66c	6
	≧ 9.6	a + 1.05b = -0.18 - 0.72c	8
A8	≦9.5	a - 0.49b = -0.09 - 0.23c	8
	≧ 9.6	a + 0.87b = -0.20 - 0.77c	б

Table 17.

Spectrum	Limits of	Equations of condition	Number
Spectrum	maguitude	for the unknown b	of stars
Fo	≦ 8.9	a - 0.84b = -0.09 + 0.00c	17
	≧ 9.0	a + 0.39b = -0.05 - 0.48c	14
۴ı	≦ 9.2	a - 0.39b = + 0.05 - 0.57c	16
	9.3 to 9.7	a + 0.50b = -0.04 - 1.41c	10
	≧ 9.8	a + 1.01b = -0.08 - 1.22c	16
F2	≦ 8.9	a - 0.82b = 0.00 + 0.64c	9
	≧ 9.0	a + 0.30b = -0.08 - 0.39c	9
F3	≦ 8.9	a - 0.86b = + 0.03 - 0.41c	9
	≧ 9.0	a + 0.43b = -0.05 - 0.28c	8
F5	≦ 8.9	a - 0.74b = + 0.07 - 0.55c	25
	≦ 9.0	a + 0.35b = + 0.02 - 0.61c	18
F8	≦ 7.9	a - 1.70b = + 0.11 + 0.02c	10
	8.0 to 8.9	a - 0.52b = + 0.12 - 0.36c	24
	≧ 9.0	a + 0.46b = -0.10 - 0.66c	13
Go	≦7.9	a - 1.59b = + 0.44 - 0.28c	9
	, 8.0 to 8.9	a - 0.58b = + 0.25 - 0.40c	25
	≧ 9.0	a + 0.28b = + 0.12 - 0.74c	9
G3	≦ 8.9	a - 0.98b = + 0.53 - 0.05c	9
	≧ 9.0	a + 0.51b = + 0.09 - 0.69c	7
G5	≦7.9	a - 1.97b = + 0.65 + 0.73c	23
	8.0 to 8.6	a - 0.63b = + 0.55 + 0.65c	20
	≧ 8.7	a + 0.10b = + 0.22 + 0.27c	14
Ko	≦7.9	a - 2.04b = +0.93 + 0.88c	19
	8.0 to 8.7	a - 0.60b = + 0.75 + 0.26c	24
	≥ 8.8	a + 0.12b = + 0.34 - 0.31c	17
K5	≦ 8.5	a - 1.27b = + 1.22 + 0.70c	12
	₹ 8.6	a - 0.12b = + 0.97 + 0.25c	9
М	≦7.9	a - 2.24b = +1.32 + 1.17c	5
	≧ 8.0	a - 0.40b = + 0.99 + 1.24c	8

Table 17 (continued).

CHAPTÉR III.

If there are more than two equations, I have solved by the method of least squares, the weights being equal to the number of stars, given in the last column.

The results are:

Group	<i>b</i> =	Weight
В	+ 0.020 - 0.391c	28
Ao	— 0.005 — 0.201 <i>c</i>	118
Аг	— 0.086 — 0.212с	25
A2	— 0.100 — 0.260 <i>с</i>	43
A3	+ 0.016 — 0.290c	25
A4	— 0.134 — 0.224 <i>c</i>	12
A5		10
A6	— 0.070 — 0.045c	6
A8	0.085 0.400c	20
Fo	+ 0.033 - 0.390c	12
Fı	0.094 0.839c	іб
F2	0.070 0.920 <i>c</i>	20
F3	<u> — 0.061 — 0.100</u> с	7
F5	0.040 0.055 <i>c</i>	I2 、
F8	— 0.053 — 0.166с	50
Go	- 0.138 - 0.503 <i>c</i>	15
G3	— 0.300 — 0.430c	9
G5	— 0.176 — 0.179c	41
Ко	- 0.214 - 0.442 <i>c</i>	54
К5	-0.218 - 0.400 <i>c</i>	7
М	- 0.180 + 0.038 <i>c</i>	7

Table 18.

27

3. Solution of c.

As in the solution of b the stars of some divisions were combined into a single group. The groups are the same as those on page 17.

For the solution of c, the stars of a certain group were divided into two or three sub-groups according to their absolute magnitude. The stars with a very large or a very small apparent magnitude were omitted, in order to make the mean apperent magnitudes of the sub-groups of stars of different absolute magnitude as equal as possible.

Every sub-group gives an equation of condition, which was written in the form

$$a + c (M + 3.00) = C. I. - b (m - 9.00).$$

If we compute the value of c in this manner, a systematic error will creep in, due to the accidental uncertaintees in the determination of the class of spectrum ¹).

This error will tend to diminish the value of c for the early type stars and to increase its value for the later types. Therefore we have to apply corrections to the colour indices; I have computed these corrections, but they are so small, that they may be neglected.

Now we can derive c as a function of b:

The stars of every group were divided into two or three subgroups according to the amount of their absolute magnitude.

Spectrum	Limits of Abs. magn.	Equations of condition for the unknown c	Number of stars
В	≦ - 4.01	a - 2.05c = -0.33 + 1.01b	9
	≧ - 4.00	a - 0.01c = -0.31 - 0.13b	8
Ao	≦-4.01	a - 2.42c = -0.28 + 0.52b	25
	- 4.00 to - 3.01	a - 0.41c = -0.35 + 0.46b	23
	≧ — 3.00	a + 0.75c = -0.25 - 0.34b	20
Aı	≦ — 3.61	a - 1.18c = -0.23 + 0.69b	8
	≧— 3.60	a - 0.15c = -0.25 - 0.03b	8
A2	≦-4.01	a - 1.73c = -0.24 + 0.81b	18
	- 4.00 to - 3.01	a - 0.56c = -0.27 + 0.35b	17
	≧ — 3.00	a + 0.52c = -0.33 + 0.16b	16
A3	≦ — 3.01	a - 0.73c = -0.13 + 0.21b	15
	≧ — 3.00	a + 0.67c = -0.17 - 0.44b	18
A4	≦ — 3.01	a - 0.56c = -0.30 - 0.10b	7
	≧ — 3.00	a + 0.70c = -0.33 - 0.41b	7
A5	≦ — 3.01	a - 1.12c = -0.19 + 0.09b	15
	≧ — 3.00	a + 0.70c = -0.19 - 0.01b	21
	-		

Table 19.

1) J. C. KAPTEYN, Contributions Mt. Wilson Observatory No. 42, p, 10, 1909.

CHAPTER III.

Spectrum	Limits of	Equations of condition	Number
-1	Abs. magn.	for the unknown c	of stars
Аб	≦ - 2.01	a + 0.15c = -0.17 - 0.70b	6
٨٥	≥ -2.00	a + 1.33c = -0.13 - 0.70b	7
A8	$\leq -2.5I$	a - 0.69c = + 0.06 - 0.33b	9
T.	<u>≧</u> — 2.50	a + 1.63c = -0.25 - 0.64b	9
Fo	≦ - 3.01	a - 1.04c = -0.11 + 0.47b	19
P -	≧ — 3.00	a + 0.86c = -0.12 - 0.10b	17
Fı	≦ — 3.01	a - 1.07c = +0.03 - 0.39b	9
	- 3.00 to - 2.01	a + 0.36c = + 0.04 - 0.42b	15
. The	≥ -2.00	a + 1.85c = -0.06 - 0.50b	21
F2	≦ — 3.01	a - 2.26c = -0.03 + 0.33b	6
F .	≧ — 3.00	a + 1.00c = -0.05 + 0.34b	8 6
F3	≦ — 3.01	a - 0.63c = +0.04 + 0.25b	1
T	≧ — 3.00	a + 0.64c = -0.09 + 0.06b	9
F5	≦ — 3.01	a - 0.60c = + 0.07 + 0.47b	10
	- 3.00 to - 2.01	a + 0.42c = + 0.03 + 0.20b	19
TO	≥ -2.00	a + 1.54c = +0.07 + 0.02b	17
F8	≦ — 3.01	a - 0.78c = + 0.13 + 0.72b	16
	- 3.00 to - 2.01	a + 0.46c = + 0.05 + 0.30b	12
C .	≥ -2.00	a + 1.67c = -0.01 + 0.42b	18
Go	≦ — 3.01	a - 1.46c = + 0.43 + 0.90b	16
C .	≧ — 3.00	a + 1.27c = + 0.15 + 0.57b	26
G3	≦-2.41	a - 0.34c = + 0.38 + 0.37b	12
C.	≧ — 2.40	a + 1.56c = + 0.22 - 0.01b	10
. G5	≦-4.0I	a - 2.09c = +0.56 + 1.09b	20
	-4.00 to - 3.01	a - 0.58c = + 0.71 + 1.26b	17
Ko	≧ — 3.00	a + 0.73c = + 0.38 + 0.77b	15
KO	≦-4.01	a - 1.86c = + 0.88 + 1.28b	23
	- 4.00 to - 2.70	a - 0.26c = + 0.73 + 0.85b	24
V -	≥ -2.69	a + 1.13c = +0.56 + 0.31b	17
K5	≦ — 3.50	a - 1.21c = + 1.27 + 1.00b	10
М	≧ — 3.49	a - 0.15c - + 1.00 + 0.52b	12 6
IVE	$ \leq -4.01 $ $ \geq -4.00 $	a - 2.31c = + 1.13 + 0.87b a - 0.43c = + 1.06 + 1.11b	6
	= - 4.00	$u = 0.43t = \pm 1.00 \pm 1.110$	7

Table 19 (continued).

If there are more than two equations, we solve by least squares, the weight of every equation being equal to the number of stars.

١

The values of c are found in the following table:

Group	c ==	Weight
В	+ 0.007 - 0.559b	18
Ao	— 0.001 — 0.232 <i>b</i>	116
Аг	0.030 0.700 <i>b</i>	4
A2	0.034 0.294 <i>b</i>	43
A3	0.031 0.464 <i>b</i>	16
A4	— 0.0 2 6 — 0.246 <i>b</i>	б
A 5	+ 0.002 - 0.055b	29
A6	+ 0.030 + 0.000b	4
A8	— 0. I 34 — 0. I 34 <i>b</i>	24
Fo	— 0.008 — 0.300 <i>b</i>	32
Fı	— 0.037 — 0.041 <i>b</i>	58
F2		42
F3	— 0.098 — 0.150 <i>b</i>	б
F5	+ 0 001 - 0.210 <i>b</i>	30
F8	— 0.050 — 0.116 <i>b</i>	52
Go	— 0.100 — 0.121 <i>b</i>	74
G3		20
G5	— 0.056 — 0.107 <i>b</i>	70
Ko	— 0.100 — 0.315 <i>b</i>	89
K5	-0.230 - 0.435b	б
М	-0.035+0.1286	II

Table 20.

4. Values of b and c,

Combining the tables 18 and 20, we find for b and c the following values:

Group	Ъ	Weight	C	Weight
в	+ 0.022	13		8
Ao	0.005	104	0.000	102
Aı	0.094	15	+ 0.038	2
A2	0.099	35	0.004	35
A3	+ 0.029	14	0.045	9
A4	0.135	10	+ 0.005	5
A5	0.033	10	0.000	29
A6	0.071	6	+ 0.030	4
A8 ·	— 0.0 3 3	6	0.130	22
Fo	+ 0.041	9	0.021	19
Fı	— 0.0б5	13	0.035	47
F2	— 0.066	18	0.004	29
F3	0.052	7	- 0.090	6
F5	0.041	12	+ 0.018	30
F8	0.047	46	— 0.03б	48
Go	0.093	13	0.090	64
G3	0. 2 72	10	0.026	22
G5	— 0.1б9	33	0.039	56
Ko	— 0.1 <i>77</i>	37	- 0.084	бі
K5	0.154	4	— 0.160	3
М	- 0.182	7	— 0.053	II

Table	21.
-------	-----

5. Discussion of the results.

When we combine the values of b according to the spectral types B, A, F, G, K and M, we find:

Table	22.

4

Spectrum	Average b	Weight	p. e. of <i>b</i>
B and A		213	± 0.010
F		105	± 0.008
G		56	± 0.027
K and M		48	± 0.003

)

On the average the probable error of the unit of weight is $\pm 0^{m}.125$.

The unit of weight in these computations is the weight of a single colourindex determination i. e. the difference between the photogr. magnitude of a star of *the Greenwich catalogue* and the vis. magn. of *Potsdam* (Müller *and* KRON). For the weight of the second member of every equation of condition was taken equal to the number of stars from which the latter was derived.

As to the fact that b is different for different spectral classes, Prof. KAPTEVN found the same result in his paper On the Absorption of light in space (Contributions Mount Wilson No. 42). The author attributes the phenomenon to an error in the photogr. scale of the Draper Catalogue (see pages 5 and 6 of the above mentioned paper).

In the same manner I have treated the values of c:

Spectrum	Average c	Weight	p. e. of <i>c</i>
B and A	0.01 5	216	± 0.010
F	0.022	179	± 0.007
G	— о.обо	142	± 0.013
K and M	— 0.083	75	± 0.008

Table 23.

Here we find on the average the same value for the probable error of the unit of weight i. e. the probable error of a single colour-index determination, viz. $\pm C^{m}$. 126.

6. Summary of results.

1) The later spectral types predominate among the fainter stars (Table 15)

2) The apparent faint stars are, ceteris paribus, bluer thant he bright stars (Table 22).

In my opinion this effect is probably due to an error in the photographic scale of the *Greenwich catalogue* or an error in the visual scale of *Potsdam*.

The surprising result of table 22 is, that the value of b changes with the spectrum.

3) The stars with small proper motion are, ceteris paribus, redder than those with large proper motion (Table 23).

This effect is probably due to an influence of the absolute magnitude on the colour. This influence seems to increase with advancing type, but the effect seems not to exist for the B and A stars, because for these spectra the value of c ($\pm 0^{m}.015$) is but 1.5 times larger than its probable error ($\pm 0^{m}.010$).

The same phenomenon is found by Dr. P. J. VAN RHIJN in his dissertation Derivation of the change of colour with distance and apparent magnitude and by ADAMS and KOHLSCHUTTER. In the discussion of the results on page 71, of the above-mentioned dissertation we can see that c i. e. the increase of the colour index per unit of distance for the B-stars and early A-stars is equal to 0.00000, whereas c shows a systematic change with the spectral type.

ADAMS and KOHLSCHUTTER came to the following conclusion on page 1 of their paper Some spectral criteria for the determination of absolute stellar magnitudes ¹).

"The continuous spectrum of the small proper motion stars is relatively fainter in the violet as compared with the red than is the spectrum of the large proper motion stars. The magnitude of this effect appears to depend on the spectral type, and increases with advancing type between Fo and Ko."

¹⁾ Contributions from the Mount Wilson Solar Observatory No. 89.

TABLES AND PLATES.

EXPLANATION OF THE TABLES AND THE PLATES.

- Columns 2 and 3 give α and δ of the stars from Astrographic catalogue 1900 Greenwich section, Volume III.
- Column 4 gives the numbers from the Bonner Durchmusterung.
- Column 5 is taken from the above mentioned Astrographic catalogue, applying a correction of $+ o^{m}.1$ (see pages 5 and 6)
- Column 6 contains the visual magnitudes, determined by Müller and KRON.
- Column 7 gives the differences between the magnitudes in the columns 5 and 6.
- Columns 8, 9 and 10 give the spectra.

Column 11 contains the total proper motion (see page 6).

Plates: The ordinate represents the relative intensities between several spectral lines.

The abscissa gives the spectrum.

There are three curves $\left(\frac{H_{\delta}}{K}, \frac{H}{K} \text{ and } \frac{H}{H_{\delta}}\right)$ for large dispersion (P2) and two curves $\left(\frac{H}{K} \text{ and } \frac{H}{H_{\delta}}\right)$ for small dispersion (P1).

29

ZONE 79.

					B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	a I	900.0	8 19	00,0	No.	magn. Greenwich.	Mülleı and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich
1 2 3	h 20 21 21	m 30.6 21.5 55.9	79 79 79 79	, 53 55 50	675 701 721	7.2 7.6 7.8			Ao Fo Ko		Ao M	
•	•						Zone	80.				
4 56 7 8	5 56 6 7	12.9 33 7 8.9 53 2 5.8	80 80 80 80 80 80	58 34 56 42 48	168 181 206 227 230	8.8 8.0 8.7 8.1 8.1	7.9 8.2 8 2 8.6 7 3	$ \begin{array}{c} + 0.9 \\ - 0.2 \\ + 0.5 \\ - 0.5 \\ + 0.8 \end{array} $	M A2 G8 A6 G3	Ko A2 G5 Ao Ko	G5	
9 10 11 12 13	7 7 11 12 12	25.2 39.8 33.8 31.1 46.6	80 80 80 80 80	47 31 53 48 57	233 238 381† 400† 407†	8.8 7.1 9.3 7.4 8.3	8.9 6.7 9.6 7.3 7.7	$ \begin{array}{r} - 0.1 \\ + 0.4 \\ - 0.3 \\ + 0.1 \\ + 0.6 \end{array} $	F6 G5 A2 A5 F5	F8 G5 A2 F2 G5	G1 A6	0.029 0.120 0.018
14 15 16 17 18	12 13 13 20 20	55.5 25.6 37.8 18.0 20.2	80 80 80 80 80	27 58 59 13	398 427† 440† 648 650	8.2 9.5 8.8 7.7 - 6.6	8.3 9.7 9.1 7.9 7.1	- 0.1 - 0.2 - 0.3 - 0.2 - 0.5	F1 A2 F2 F0 B9	F5 A2 F5 F0 A0	Bg	0.013 0.081
19 20 21 22 23	20 20 20 20 20 20	20.4 23.0 35.3 36.2 40.2	80 80 80 80 80	16 50 45 47 33	651 652 660 662 664	8.0 8.6 6.6 8.9 9.1	8.0 8.1 6.3 9.0 9.3	0.0 + 0.5 + 0.3 - 0.1 - 0.2	FI G K F1 A6	A5 Ko Ko	K2	
24 25 26 27 28	20 20 21 21 21	45.3 52.1 8.1 11.1 11.2	80 80 80 80 80	27 11 45 37 59	667 672 679 682 683	9.2 6.3 7.1 8.4 9.2	9.5 5.4 7.2 7.1 9.1	$ \begin{array}{r} -0.3 \\ + 0.9 \\ - 0.1 \\ + 1.3 \\ + 0.1 \\ \end{array} $	Ao Ko Fo K G3	Ko Fo K2	G8 A6 G—K	
29 30 31 32 33	21 21 21 21 21 21	16.9 16.8 17.5 26.0 27.8	80 80 80 80 80 80	59 23 49 29 ·5	689 688 690 695 707*	7.1 6.2 8.6 6.7	9.0 7 .5 6.4 9.0	- 0.4 - 0.2 - 0.4	Ko Aı Ao Aı F	Ao A2	A1 A2 G1	
34 35 36 37 38	21 21 21 22 22	37.4 48.3 50.1 25.8 26.2	80 80 80 80 80	43 15 12 54 11	700 706 717* 722 739*	8.8 8.3 8.5 9.1 7.7	8.8 8.5 9.4	0.0 - 0.2 - 0.3	F 5 F A6 Ko Ko	F5 F2	G6	
39 40 41	22 22 22	29.5 39.2 53.9	80 80 80	20 52 45	724 731 739	9·3 7·4 8.1	9.5 7.0 8.3	- 0.2 + 0.4 - 0.2	A0 A5 A2	F8 A5 A3	F5	
							ZONE			, .	1	11
42 43 44 45	4 4 5 5	54 8 59.2 0.4 8.9	81 81 81 81 81	50 49 6 16	174 177 178 180	93 8.9 8.9 9.2	9.5 9.0 8.2 9.5	$ \begin{array}{ c c c } - & 0.2 \\ - & 0.1 \\ + & 0.7 \\ - & 0.3 \end{array} $	A0 F1 G3 A2	A F G5 A0		0.024 0.031 0.027 0.009

Zone 81 in B. D.
Zone 79 in B. D.

.

/

TABLES.

ZONE 81. — Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	α 1900.0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
46 47 48 49 50	h m 5 I4.4 5 I5.5 5 20.4 5 23.8 5 35.0	81 37 81 34 81 19 81 15 81 45	183 184 187 189 192	9.2 9.8 8.7 9.7 8.7	8.6 9.7 8.7 9.6 8.8	+ 0.6 + 0.1 0.0 + 0.1 - 0.1	Go A5 A6 F1 A1	Go F2 Ao		" 0.174 0.025 0.021 0.022 0.031
51 52 53 54 55	5 38.4 5 40.4 5 50.2 5 51.1 5 52.7	8 I 20 8 I 20 8 I 3 I 8 I 38 8 I 6	194 195 201 202 204	8.5 10.0 9.5 10.2 9.8	8.0 10.1 9.0 10.4 9.8	+ 0.5 - 0.1 + 0.5 - 0.2 0.0	Go A2 F Ao B9	G5 Go		0.010 0.011 0.375 0.016 0.017
56 57 58 59 60	5 53.6 5 53.8 5 58.7 6 3.6 6 3.8	81 52 81 4 81 58 81 47 81 8	205 207 210 214 215	10.2 10.1 9.6 9.9 10.0	10.2 10.0 8.9 9.3 9.2	0.0 + 0.1 + 0.7 + 0.6 + 0.8	A Ao Ko Ko K	Ko G5		0.017 0.006 0.030 0.025 0.065
61 62 63 64 65	6 24.2 6 26.1 6 29.4 6 37.2 6 39.5	81 42 81 54 81 14 81 49 81 3	221 222 225 226 227	9.7 9.3 9.6 10.1 9.1	9•5 9•3 8•4 9•9 9.0	+ 0.2 0.0 + 1.2 + 0.2 + 0.1	F3 A5 M F1 G3	F2 K5 Go		0,022 0.022 0.012 0.018 0.034
66 67 68 69 70	6 47.6 6 49.0 6 51.3 6 56.1 7 2.3	81 53 81 21 81 44 81 10 81 2	229 231 233 236 239	9.5 9.6 9.6 9.7 9.1	9.6 9.1 8.8 9.4 8.1	$ \begin{array}{r} - 0.1 \\ + 0.5 \\ + 0.8 \\ + 0.3 \\ + 1.0 \\ \end{array} $	A9 K K K K	G5 K2 Ko		0.007 0.030 0.033 0.023 0.07 I
71 72 73 74 75	7 2.4 7 2.6 7 6.4 7 8.2 7 8.7	81 27 81 20 81 26 81 10 81 14	238 240 242 243 244	9.9 10.1 6.2 8.9 10.1	10.3 10.4 6.6 8.9 10.2	- 0.4 - 0.3 - 0.4 0.0 - 0.1	A1 B9 B9 A8 A8 A4	B9 F2	В8	0.019 0.009 0.026 0.034 0.029
76 77 78 79 80	7 14.0 7 16.5 7 27.7 7 38.9 7 50.4	81 13 81 6 81 55 81 36 81 59	250 252 213† 257 224†	9.9 7.3 7.8 8.3 9.2	10.5 6.7 7.8 7.2 8.3	0.6 + 0.6 0.0 + 1.1 + 0.9	A2 K B9 K0 K0	Ko B9 K2	Ao K2	0.018 0.020 0.006 0.043 0.035
81 82 83 84 85	7 50.8 7 54.5 11 19.6 11 22.9 11 24.8	81 58 81 20 81 6 81 35 81 41	226† 263 369 370 373	9.4 9.2 9.2 10.0 6.2	9.7 8.7 9.7 6.4	- 0.3 + 0.5 - 0.5 - 0.2	Ao G8 A2 F3 Ao	G5 A0 F8 A0	A2	0.014 0.018 0.016 0.062 0.169
86 87 88 89 90	11 28.0 11 29.4 11 35.9 11 52.8 11 55.1	81 22 81 51 81 8 81 11 81 25	375 338† 384 388 389	9.4 9.5 8.6 8.4 7.7	9.7 9.8 9.0 8.4 6.5	-0.3 -0.3 -0.4 0.0 +1.2	A2 A7 A2 F1 M	Ao A5 F8 Ma	K 8	0.009 0.150 0.041 0.080 0.072
91 92 93 94 95	12 7.0 12 30.2 12 41.9 12 45.4 12 53.7	81 59 81 30 81 10 81 49 81 55	358† 399 402 375† 379†	10.3 9.0 6.4 11.4 9.6	10.5 8.4 6.6 10.0	- 0.2 + 0.6 - 0.2 - 0.4	A6 G6 A2 A2 A9	G5 A0 A0	A 3	0.008 0.039 0.035 0.014 0.036

† Zone 82 in B. D.

.

ZONE 81. — Continued.

					B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	α 19	900.0	δις)00.0	No.	magn. Greenwich.	Müll e r and Kron.	Index.	author.	Harvard circular 180.	Yerkes A ctinometry.	Motion Greenwich.
96 97 98 99 100	h 12 13 13 13 13	m 58.6 11.5 28.4 41.9 42.5	0 81 81 81 81 81 81	, 25 0 47 41 34	412 416 395† 444 445	7.8 7.0 8.7 9.3 10.6	7.5 6.4 8.9 9.7 10.7	+ 0.3 + 0.6 - 0.2 - 0.4 - 0.1	G7 F4 A3 F1 Ko	Go G5 A5	Go G3	" 0.066 0.008 0.031 0.054 0.033
101 102 103 104 105	13 14 19 20 20	52.5 19.0 56.0 4.2 14.4	81 81 81 81 81 81	16 38 19 52 55	452 464 687 691 697	7.7 9.2 8.0 9.3 10.2	6.8 9.3 8.2 9.3 10.2	+ 0.9 - 0.1 - 0.2 0.0 0.0	G5 F1 A7 K F0	Ko G5 Fo	K2	0.05 I 0.023 0.066 0.04 I 0.098
106 107 108 109 110	20 20 20 20 20 20	14.7 15.5 15.6 33.2 34.5	81 81 81 81 81 81	12 9 55 6 5	696 698 699 657* 659*	9.9 9.0 7.6 7.4 6.3	9.8 9.1 7.7 6.7 5.4	$ \begin{array}{r} + \text{ 0.1} \\ - \text{ 0.1} \\ - \text{ 0.1} \\ + \text{ 0.7} \\ + \text{ 0.9} \\ \end{array} $	F 1 A3 F9 G3 Ko	F 5 Ko Ko	F G4 G4	0.027 0.025 0.054 0.052 0.037
111 112 113 114 115	20 20 21 21 21 21	38.6 41.6 0.7 11.1 11.2	81 81 81 81 81 81	3 5 39 25 49 49	710 712 725 728 729	8.9 8.2 8.3 8.9 8.6	8.3 7.1 8.4 8.8 8.6	+ 0.6 + 1.1 - 0.1 + 0.1 0.0	G K K Fo F2	Ko Ko F 2 F 8	к	0.020 0.075 0.016 0.052 0.005
116 117 118 119 120	2 I 2 I 2 I 2 I 2 I 2 I 2 I	21.7 22.8 25.6 30.8	81 81 81 81 81	20 36 37 18 45	735 736 739 742 744	8.7 8.3 9.1 8.6 9.0	7.6 7.5 9.3 8.1 9.2	+ 1.1 + 0.8 - 0.2 + 0.5 - 0.2	K Ko G G3 A5 Ao	Ko Ko G5 Ao		0.034 0.017 0.040 0.241 0.004
120 121 122 123 124 125	2 I 2 I 2 I 2 2 2 2 2 2 2 2	33.6 42.5 42.8 1.0 16.0 21.9	81 81 81 81 81 81	43 39 33 9 4 39	750 752 713* 720* 773	9.6 9.1 10.2 9.7 9.7	9.6 9.5 10.6 10.0 9.9	0.0 - 0.4 - 0.4 - 0.3 - 0.2	F 5 Ao Ao Ao Ao			0.021 0.018 0.048 0.015
126 127 128 129 130	22 22 22 22 22 22	23.7 29.1 42.9 43.2 48.5	81 81 81 81 81 81	26 39 22 58 25	775 781 788 789 795	7.1 8.6 8.6 8.7 8.5	7.3 8.8 7.6 8.0 8.8	$ \begin{array}{c} - 0.2 \\ - 0.2 \\ + 1.0 \\ + 0.7 \\ - 0.3 \end{array} $	F 5 Ao K Ko A 5	F 2 Ao Ko K A3	F3	0.098 0.017 0.005 0.016 0.010
13 I 132 133	22 22 23	50.4 53.5 10.4	18 18 18	27 24 51	797 801 814	9.7 8.3 7.9	9•1 7.7 7.7	+ 0.6 + 0.6 + 0.2	Ao K G	Ko Go		0.032 0.023 0.124
							Zone	82.				
134 135	4	40.1 47.8	82 82	41 22	127 132	9.6 8.8	9•7 8.3	- 0.1 + 0.5	A7 G5	Ko		0.036 0.017
136 137 138 139 140	4 4 4 5 5	49.7 51.5 52.7 8.6 12.2	82 82 82 82 82 82 82	25 40 21 31 19	133 135 136 141 143	8.9 9.8 9.3 9.6 9.3	9.0 10.0 9.7 9.8 8.5	$ \begin{array}{r} - & 0.1 \\ - & 0.2 \\ - & 0.4 \\ - & 0.2 \\ + & 0.8 \end{array} $	Fo AI Ao B9 G5	F2		0.022 0.011 0.008 0.024 0.017

† Zone 82 in B. D.
* Zone 80 in B. D.

.

TABLES.

ZONE 82. — Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectrum	m	Proper
.No.	a 1900.0	ð 1900 .0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
141 142 143 144 145	$ \begin{array}{ccccc} h & m \\ 5 & 13.7 \\ 5 & 22.9 \\ 5 & 28.2 \\ 5 & 33.8 \\ 5 & 37.5 \\ 5 & 37.5 \\ 5 & 37.5 \\ 5 & 37.5 \\ \end{array} $	o ' 82 36 82 22 82 38 82 42 82 37 82 37 82 37	144 146 147 148 151	9.8 10.2 10.1 10.3 9.5 11.0	9.5 10.3 9.1 10.2 10.1	+ 0.3 - 0.1 + 1.1 - 0.1	F 1 A0 K5 A3 A3			0.043 0.004 0.021 0.033 0.027
146 147 148 149 150	5 40.3 5 44.5 5 46.9 5 53.4 6 13.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152 154 155 156 168	7.8 10.1 9.5 10.3 9.0	7.8 10.4 8.3 10.3 8.7	0.0 - 0.3 + 1.2 0.0 + 0.3	F6 A3 K3 A F8	F8 Ko Go		0.061 0.024 0.019 0.030 0.009
151 152 153 154 155	6 17.0 6 19.8 6 23.4 6 23.5 6 28.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173 174 177 176 179	9.8 9.3 6.8 9.3 10.2	9.9 9.1 6.8 8.7 10.6	$ \begin{array}{r} - & 0.1 \\ + & 0.2 \\ & 0.0 \\ + & 0.6 \\ - & 0.4 \end{array} $	A5 K0 A2 K A2	G A2 Ko	A 3	0.023 0.156 0.054 0.017 0.013
156 157 158 159 160	6 34.5 6 36.8 6 37.1 6 39.7 6 39.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	183 184 185 187 188	10.2 9.8 9.6 9.9 9.3	10.1 9.6 8.7 10.2 8.6	$ \begin{array}{r} + 0.1 \\ + 0.2 \\ + 0.9 \\ - 0.3 \\ + 0.7 \\ \end{array} $	G3 F1 K A3 Ko	K2 K2		0.021 0.111 0.041 0.017 0.016
161 162 163 164 165	6 42.1 6 45.9 6 54.6 7 10.1 7 12.4	82 44 82 0 82 36 82 36 82 52	189 191 194 201 2 0 3	9.0 9.7 8.7 6.7 10.4	9.3 8.9 7.4 5.1 10.6	$ \begin{array}{c c} - & 0.3 \\ + & 0.7 \\ + & 1.3 \\ + & 1.6 \\ - & 0.2 \end{array} $	A5 K K5 M F1	A2 K2 K5 Ma	М	0.017 0.015 0.013 0.053 0.027
166 167 168 169 170	7 14.9 7 17.5 7 20.1 7 20.3 7 30.1	82 12 82 44 82 53 82 57 82 57	204 205 207 188† 195†	8.6 9.6 8.7 10.1 9.7	8.7 9.7 8.8 9.7 9.2	$ \begin{array}{r} - 0.1 \\ - 0.1 \\ - 0.1 \\ + 0.4 \\ + 0.5 \end{array} $	F 5 A 5 F 5 F 5 A 3	F5 F5 F		0.014 0.012 0.042 0.026 0.011
171 172 173 174 175	7 40.9 7 49.0 7 52.6 7 55.1 8 5.2	82 26 82 41 82 45 82 3 82 44	217 222 228 231 235	9.8 9.0 9.0 8.4 6.3	10.1 9.4 9.2 8.2 6.5	$ \begin{array}{r} - 0.3 \\ - 0.4 \\ - 0.2 \\ + 0.2 \\ - 0.2 \end{array} $	G5 A1 F4 Go A0	A F 5 F 5 Ao	В9	0.022 0.007 0.017 0.067 0.034
176 177 178 179 180	8 18.2 8 22.9 8 27.3 8 28.3 10 52.1	82 29 82 57 82 41 82 36 82 43	245 220† 251 253 321	9.2 9.7 8.8 6.7 9.3	8.8 8.6 8.7 7.1 9.6	$ \begin{vmatrix} + 0.4 \\ + 1.1 \\ + 0.1 \\ - 0.4 \\ - 0.3 \end{vmatrix} $	G5 K G0 B9 A5	G5 Ko F5 Ao	Ao	0.006 0.010 0.025 0.015 0.028
181 182 183 184 185	II 2.2 II 23.0 II 33.3 II 36.8 II 38.1	82 17 82 39 82 38 82 38 82 3 82 53	325 332 342 343 336†	7.7 9.0 8.9 8.9 8.6	7.4 9.0 8.3 9.2 7.9	$ \begin{array}{c c} + 0.3 \\ 0.0 \\ + 0.6 \\ - 0.3 \\ + 0.7 \end{array} $	F8 F2 K0 A3 G3	Go Go G5 A3 G5	F8	0.214 0.079 0.035 0.059 0.024
186 187 188 189 190	11 48.4 11 52.8 11 58.3 12 6.5 12 7.0	82 30 82 44 82 15 82 16 82 16	348 351 355 356 357	9.1 9.5 8.2 7.4 8.4	9.1 9.6 7.6 6.2 8.5	$ \begin{array}{c} 0.0 \\ - 0.1 \\ + 0.6 \\ + 1.2 \\ - 0.1 \end{array} $	A6 F1 Ko G6 A7	F8 G5 K2 F5	K2	0.051 0.016 0.018 0.015 0.041

† Zone 83 in B. D.

ZONE 82. -- Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	a 1900.0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
191 192 193 194 195	h m 12 23.3 12 25.2 12 31.2 12 45.1 12 46.7	0 ' 82 2 82 33 82 29 82 15 82 6	363 365 368 374 377	9.3 8.2 9.7 9.2 10.1	9.4 8.3 9.6 9.1	0.1 0.1 + 0.1 + 0.1	A5 F5 F0 F2 F1	Fï		" 0.021 0.060 0.058 0.005 0.085
196 197 198 199 200	12 47.8 12 53.4 13 16.5 13 41.9 13 56.7	82 58 82 42 82 2 82 12 82 31	365† 378 390 402 406	9.0 8.9 8.4 9.5 10.1	9.1 9.0 8.5 9.9 10.1	0.1 0.1 0.1 0.4 0.0	A4 A6 F1 A1 A3	A3 A3 F5		0.017 0.068 0.072 0.019 0.018
201 202 203 204 205	13 59.1 14 31.0 14 43.0 14 57.1 19 58.9	82 6 82 24 82 54 82 55 82 11	407 423 423† 431† 598	8.3 8.9 8.9 6.2 8.5	8.7 9.1 8.7 5.9 var. 7.5 – 8.0	- 0.4 - 0.2 + 0.2 + 0.3	A2 A3 Ko G6 G	Ao Az Go Ko	F8	0.017 0.034 0.021 0.271 0.029
206 207 208 209 210	20 13.1 20 24.9 20 28.7 20 29.4 20 34.4	82 32 82 44 82 2 82 31 82 51	609 611 70 6* 613 617	8.5 9.0 7.2 8.1 7.5	8.4 9.2 7.2 8.3 6.9	+ 0.1 - 0.2 0.0 - 0.4 + 0.6	Go Ao F8 A1 G4	F 8 Ao F 5 Ao G 5	F 2 G 2	0.096 0.004 0.043 0.014 0.004
211 212 213 214 215	20 48.1 20 49.9 21 5.5 21 14.0 21 17.5	82 41 82 10 82 35 82 25 82 37	627 718* 636 640 644	8.3 5.7 8.1 9.7 9.8	8.4 6.2 8.3 9.9 9.9	0.1 0.5 0.2 0.2 0.1	A2 A0 A3 B9 A0	A5 A0 A5	B8	0.045 0.059 0.017 0.017 0.039
216 217 218 219 220	21 23.0 21 27.9 21 30.1 21 32.1 21 41.9	82 5 82 33 82 51 82 3 82 28	737* 648 650 743* 657	8.1 8.1 8.8 9.4 8.7	8.1 8.3 8.4 9.5 8.3	$\begin{array}{r} 0.0 \\ - 0.2 \\ + 0.4 \\ - 0.1 \\ + 0.4 \end{array}$	G1 A2 G2 A3 G	F 8 A2 Go G5	F	0.100 0.006 0.016 0.021 0.042
221 222 223 224 225	21 43.8 21 45.9 21 48.9 21 54.6 22 1.8	82 59 82 11 82 37 82 59 82 23	660 753* 663 667 673	10.5 9.8 9.5 9.2 7.6	10.7 9.8 8.3 8.7 7.2	$ \begin{array}{c} - 0.2 \\ 0.0 \\ + 1.2 \\ + 0.5 \\ + 0.4 \end{array} \right\} $	A F G K F1	F5	F5	0.039 0.004 0.021 0.011 0.136
226 227 228 229 230	22 I.9 22 7.2 22 9.0 22 2I.1 22 22.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	674 677 767* 687 688	8.2 9.9 7.8 9.7 9.4	7.8 10.0 7.9 9.8 9.4	+ 0.4) - 0.1 - 0.1 - 0.1 0.0	A6 A1 Ko G5	Ao		0.142 0.019 0.046 0.018 0.176
231 232 233 234 235	22 43.9 22 47.9 22 56.7 23 7.5 23 13.5	82 45 82 37 82 31 82 2 82 54	700 703 707 810* 712	7.3 6.0 9.0 8.3 9.1	7.5 4.8 8.4 7.6 10.0	-0.2 + 1.2 + 0.6 + 0.7 - 0.9	A1 Ko Ko K Ao	B8 Ko Ko K2	K2	0.034 0.059 0.024 0.046 0.052
					Zone		II TE -	1	1	0.000
236 237 238 239 240	4 11.6 4 21.5 4 28.1 4 34.1 4 37.0	83 57 83 50 83 33 83 7 83 1	111 114 118 121 125§	8.7 8.0 8.8 8.2 7.4	8.6 7.4 8.6 8.3 7.8	$ \begin{array}{c} + 0.1 \\ + 0.6 \\ + 0.2 \\ - 0.1 \\ - 0.4 \end{array} $	F4 Ko G5 F B9	Ko F 5 B 9	G2	0.039 0.050 0.039 0.043 0.033

† Zone 83 in B. D.
* Zone 81 in B. D.
§ Zone 82 in B. D.

.

ZONE 83. - Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectrui	m	Proper
No.	a 19 00. 0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
241 242 243 244 245	h m 4 38.4 4 42.4 4 49.8 5 4.9 5 5.5	83 33 83 19 83 24 83 43 83 52	123 126 129 137 138	9.4 8.8 9.2 8.5 9.4	8.9 8.0 8.8 8.8 9.2	+ 0.5 + 0.8 + 0.4 - 0.3 + 0.2	F 5 K K5 A5 F 1	K2 F5		" 0.022 0.028 0.033 0.053 0.016
246 247 248 249 250	5 8.9 5 11.8 5 14.9 5 16.3 5 19.5	83 19 83 47 83 17 83 4 83 4 83 21	139 141 142 144 145	9·3 7.0 9.7 9.7 9.4	9•3 7 ·2 8.7 9.1 9•7	0.0 - 0.2 + 1.0 + 0.6 - 0.3	G Ao M Ko A ₃	Go Ao K5 Ko A	Ао	0.065 0.021 0.009 0.026 0.010
251 252 253 254 255	5 30.0 5 30.1 5 30.3 5 34.6 5 41.7	83 5 83 22 83 34 83 40 83 36	151 150 149 153 155	10.0 10.0 8.9 9.5 9.9	9.9 10.5 8.2 9.7 10.0	+ 0.1 - 0.5 + 0.7 - 0.2 - 0.1	G3 A3 G5 Ko G3	Ко		0.031 0.017 0.029 0.02 6 0.023
256 257 258 259 260	6 9.7 6 24.6 6 40.2 6 41.1 6 44.5	83 49 83 33 83 31 83 45 83 19	164 167 170 172 174	9.1 9.9 9.4 9.2 10.4	9.3 10.0 9.5 8.8 10.5	$ \begin{array}{r} - 0.2 \\ - 0.1 \\ - 0.1 \\ + 0.4 \\ - 0.1 \end{array} $	F 2 F 1 F 5 G 3 A	Fo G5		0.033 0.021 0.026 0.235 0.031
261 262 263 264 265	6 47.7 6 50.4 6 53.2 6 59.2 7 9.3	83 9 83 9 83 1 83 39 83 39 83 32	177 178 181 182 185	9.6 8.9 9.7 8.4 10.3	9.1 8.2 9 ^{.1} 8.6 10.5	$ \begin{array}{r} + 0.5 \\ + 0.7 \\ + 0.6 \\ - 0.2 \\ - 0.2 \\ \end{array} $	Go G Ko Ao F 1	Ко Ко В9		0.032 0.025 0.032 0.031 0.017
266 267 268 269 270	7 25.9 7 27.9 7 29.1 7 42.1 7 57.0	83 18 83 12 83 48 83 7 83 13	191 193 194 201 206	9.0 10.4 9.4 10.3 10.6	8.0 10.2 9.4 10.0 10.7	$ \begin{array}{c} + 1.0 \\ + 0.2 \\ 0.0 \\ + 0.3 \\ - 0.1 \end{array} $	G A3 F1 A3 A2	Ко		0.019 0.012 0.064 0.039 0.047
271 272 273 274 275	8 3.6 8 5.6 8 8.9 8 9.5 8 9.6	83 24 83 4 83 18 83 40 83 29	207 210 212 213 214	7.9 9.5 9.5 10 7 9.8	7.7 9.6 9.2 10.7 9.7	$ \begin{array}{c} + \ 0.2 \\ - \ 0.1 \\ + \ 0.3 \\ 0.0 \\ + \ 0.1 \end{array} $	F6 A8 F5 A Go	F8		0.080 0.020 0.075 0.008 0.048
276 277 278 279 280	8 27.1 8 27.7 8 35.5 8 41.8 - 8 44.5	83 35 83 46 83 55 83 6 83 8	223 224 187† 232 233	9.6 9.5 9.0 8.0 7.3	10.1 9.9 9.4 7.3 7.1	$ \begin{array}{r} - 0.5 \\ - 0.4 \\ - 0.4 \\ + 0.7 \\ + 0.2 \end{array} $	A2 A2 A4 G5 G0	Аз Ко Fo	G3 FI	0.042 0.009 0.029 0.007 0.014
281 282 283 284 285	8 49.1 8 57.0 10 35.8 10 52.0 10 58.8	83 34 83 45 83 59 83 46 83 17	236 239 241† 312 318	9.1 8.9 10.1 8.7 8.6	8.5 9.1 10.0 Double 9.3 + 10.1 8.5	+ 0.0 - 0.2 + 0.1 + 0.1	GI Ao A9 F2 F1	Go F8 F8		0.002 0.008 0.020 0.028 0.103
286 287 288 289 290	11 9.7 11 38.0 11 45.2 11 52.3	83 10 83 59 83 13 83 23 83 18	324 260† 339 343 345	9.6 8.8 8.5 9.4 9.9	10.1 9.2 8.7 9.5 9.8	- 0.5 - 0.4 - 0.2 - 0.1 + 0.1	A6 A1 A2 F3 A6	A2		0.036 0.022 0.023 0.061 0.039

† Zone 84 in B. D.

.

ZONE 83. - Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	α 1900.0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author,	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
291 292 293 294 295	h m 12 14.8 12 16.0 12 16.5 12 18.9 12 20.7	83 46 83 32 83 56 83 13 83 59	273* 350 274* 352 276*	10.2 9.3 8.6 8.9 8.5	10.3 9.6 7.9 9.1 8.2	$ \begin{array}{r} - 0.1 \\ - 0.3 \\ + 0.7 \\ - 0.2 \\ + 0.3 \end{array} $	F2 K0 K0 F1 F3	Ko G F8	G	" 0.030 0.021 0.009 0.049 0.017
296 297 298 299 300	12 21.2 12 48.9 12 53.2 12 53.3 12 58.9	83 13 83 4 83 4 83 46 83 28	354 366 369 291* 373	9.0 9.6 8.1 9.5 8.2	9·4 9·3 7·2 9·5 8.3	- 0.4 + 0.3 + 0.9 0.0 - 0.1	A2 F1 G6 F1 A3	A3 G5 Ko Ao	G—К	0.010 0.012 0.050 0.005 0.018
301 302 303 304 305	13 11.2 13 26.7 13 45.2 13 56.3 14 36.4	83 55 83 49 83 15 83 26 83 54	302* 311* 397 402 327*	9.1 7.8 6.8 10.0 9.3	8.9 7.4 6.1 9.9 9.2	+ 0.2 + 0.4 + 0.7 + 0.1 + 0.1	F1 G6 F5 G5 F1 F5	F 5 G 5 G 5	F9 G3	0.029 0.114 0.058 0.050 0.108
306 307 308 309 310	14 44.5 19 4.0 19 15.7 19 28.0 19 29.8	83 1 83 46 83 41 83 16 83 36	424 547 549 552 554	10.5 6.8 10.1 6.8 9.4	10.9 7.1 10.2 6.8 9.7	0.4 0.3 0.1 0.3	F7 A2 A2 A1 A1	A2 A2	A2 A2	0.008 0.026 0.045 0.044 0.025
311 312 313 314 315	19 40.8 19 45.4 19 45.7 20 6.4 20 10.0	83 10 83 33 83 6 83 59 83 8	557 559 592† 569 608†	10.0 9.7 9.1 9.3 8.4	10.1 9.7 8.2 9.3 8.6	$ \begin{array}{r} - & 0.1 \\ 0.0 \\ + & 0.9 \\ 0.0 \\ - & 0.2 \end{array} $	K A5 K F0 A2	K0 A5		0.004 0.026 0.012 0.065 0.028
316 317 318 319 320	20 18.5 20 19.2 20 28.7 20 33.0 20 34.4	83 53 83 17 83 58 83 14 83 18	572 573 581 586 587	9.1 9.9 9.6 9.2 10.4	8.9 9.9 9.3 9.4 10.5	$+ 0.2 \\ 0.0 \\ + 0.3 \\ - 0.2 \\ - 0.1$	F5 F1 G5 A0 A0			0.037 0.033 0.066 0.009 0.029
321 322 323 324 325	20 39.1 20 52.8 20 53.9 20 59.0 21 21.6	83 17 83 19 83 22 83 33 83 50	588 593 594 596 603	6.4 9.5 9.1 7.5 7.9	6.6 9.9 8.5 7.4 7.0	- 0.2 - 0.4 + 0.6 + 0.1 + 0.9	A1 Ao G F8 G	A2 Ko F2 G5	A2 K	0.029 0.016 0.002 0.114 0.043
326 327 328 329 330	21 31.0 21 35.4 21 39.5 21 42.7 21 43.0	83 8 83 24 83 30 83 53 83 12	651† 613 614 615 658†	8.6 8.5 8.2 9.5 10.2	8.6 8.5 8.0 9.0 10.3	0.0 0.0 + 0.2 + 0.5 - 0.1	F6 Go F8 K Ao	F8 F0 F5		0.064 0.036 0.035 0.028 0.016
331 332 333 334 335	21 44.0 21 45.7 21 47.3 21 50.4 21 55.4	83 10 83 51 83 52 83 34 83 34	661† 616 617 618 620	10.9 8.1 8.8 7.4 8.9	10.8 8.3 8.5 7.3 8.1	$\begin{array}{c c} + & 0.1 \\ - & 0.2 \\ + & 0.3 \\ + & 0.1 \\ + & 0.8 \end{array}$	A A4 K A4 G5	A3 Ko A5 Ko	A4	0.030 0.014 0.348 0.096 0.050
336 337 338 339 340	22 1.5 22 3.8 22 12.2 22 12.8 22 14.1	83 I 83 52 83 35 83 5 83 5 83 18	672† 622 626 682† 627	7.8 8.7 9.3 8.8 9.0	8.1 9.1 8.4	- 0.3 - 0.4 + 0.4	A8 A4 A0 G3 A0	Fo A5 Ko		0.005 0.031 0.026 0.056 0.022

* Zone 84 in B. D. † Zone 82 in B. D.

							1		<i>d</i>	
			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	a 1900.0	δ 1 900 .0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
341 342 343 344 345	h m 22 22.3 22 40.5 22 48.5 22 55.2 23 13.2	83 2 83 47 83 10 83 49 83 42	689† 635 704† 640 647	8.8 9.4 8.2 6.1 7.5	8.6 7.3 4.8 8.0	+ 0.2 + 0.9 + 1.3 - 0.5	G A5 K Ko Ao	G5 К2 Ко В9		" 0.305 0.029 0.204 0.112 0.028
					ZONE	84.				
346 347 348 349 350	0 1.5 4 7.9 4 9.0 4 19.5 4 24.3	84 51 84 21 84 14 84 48 84 26	546 77 78 83 85	8.1 10.2 8.5 8.9 9.0	8.5 10.7 7.4 9.4 9.0	- 0.4 - 0.5 + 1.1 - 0.5 0.0	A4 A0 K A2 F6 F3	A3 K2	Ко	0.016 0.042 0.034 0.025 0.031
351 352 353 354 355	4 33.4 4 43.8 4 50.8 4 58.2 5 16.7	84 42 84 46 84 5 84 45 84 45 84 14	88 90 130* 97 106	7.6 9.3 9.6 8.7 9.1	7.9 9.9 8.7 8.7 8.5	- 0.3 - 0.6 + 0.9 0.0 + 0.6	B9 A4 M F5 Ko	A2 A2 F5 K2		0.010 0.008 0.030 0.168 0.032
356 357 398 359 360	5 43.6 5 46.3 5 49.2 5 53.8 6 0.8	84 59 84 6 84 7 84 12 84 49	112 114 117 118 120	9.0 8.7 8.8 8.9 10.0	8.9 8.7 8.8 8.8 10.0	1.0 + 0.0 0.0 1.0 + 0.0	F8 Go] F8 Go A	G F 5 F 5 F 8		0.176 0.038 0.083 0.087 0.065
361 362 363 364 365	6 28.6 6 34.1 6 35.3 6 37.9 7 13.7	84 46 84 47 84 52 84 6 84 24	132 135 136 139 152	9.5 8.1 9.2 10.1 8.9	10.1 7.6 10.2 10.8 8.1	$ \begin{array}{r} - 0.6 \\ + 0.5 \\ - 1.0 \\ - 0.7 \\ + 0.8 \end{array} $	A1 G4 A4 A0 K5	G5 Ko		0.026 0.099 0.021 0.034 0.054
366 367 368 369 370	7 16.3 7 23.5 7 27.7 7 28.9 7 32.1	84 28 84 2 84 43 84 I 84 4	149 154 156 158 160	9.6 10.0 9.5 10.2 10.2	9.7 10.2 9.7 10.1 10.6	$ \begin{array}{c} - & 0.1 \\ - & 0.2 \\ - & 0.2 \\ + & 0.1 \\ - & 0.4 \end{array} $	A3 F G F1 A2			0.037 0.073 0.041 0.144 0.023
371 372 373 374 375	7 37.2 7 40.1 7 41.5 7 45.8 7 53.0	84 11 84 11 84 56 84 41 84 21	161 163 117§ 168 169	9·3 9.0 9·3 7·4 6.4	9.4 8.7 8.5 7.8 6.7	$ \begin{array}{r} - & 0.1 \\ + & 0.3 \\ + & 0.8 \\ - & 0.4 \\ - & 0.3 \end{array} $	F 3 F 9 F 1 Ao Ao	G5 Ao Ao	Ao	0.033 0.023 0.054 0.019 0.054
376 374 378 379 380	7 53.9 7 54.2 8 1.9 8 5.6 8 8.9	84 36 84 18 84 19 84 27 84 33	170 171 173 175 177	9.4 9.6 8.4 9.7 10.1	9·3 9·5 8.4 9·7 9.8	$ \begin{array}{c} + 0.1 \\ + 0.1 \\ 0.0 \\ 0.0 \\ + 0.3 \end{array} $	F 1 F 1 Go A6 G3	Fo		0.124 0.008 0.033 0.021 0.079
381 382 383 384 385	8 14.3 8 23.6 8 35.4 8 53.3 8 54.5	84 33 84 28 84 16 84 53 84 35	178 183 186 135 § 196	9.4 9.4 7.9 9.0 6.7	8.8 9 ·5 7·7 9.0 6.5	+ 0.6 - 0.1 + 0.2 0.0 + 0.2	F7 A6 F5 F1 A7	F8 - Fo	A6	0.027 0.053 0.161 0.016 0.015

ZONE 83. — Continued.

† Zone 82 in B. D.
* Zone 83 in B. D.
§ Zone 85 in B. D.

37

Zone	84. —	Continued.
------	-------	------------

			B. D.	Int. phot.	Vis. magn.	Colour		Spectrui	m	Proper
No.	a 1900.0	ð 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
386 387 388 389 390	h m 8 56.6 9 11.6 9 31.8 9 34.7 10 15.2	$\begin{array}{cccc} \circ & , \\ \delta 4 & 2 \\ 8 4 & 2 2 \\ 8 4 & 4 8 \\ 8 4 & 5 7 \\ 8 4 & 4 6 \end{array}$	199 204 215 150 § 234	8.5 10.1 9.5 8.6 5.9	8.8 10.1 8.8 8.0 5.7	$- 0.3 \\ 0.0 \\ + 0.7 \\ + 0.6 \\ + 0.2$	Ao A4 G G A4	B9 G G5 A3	A4	0.030 0.046 0.024 0.022 0.115
391 392 393 394 395	10 16.7 10 20.8 10 46.7 11 26.2 12 8.8	84 4 84 55 84 53 84 14 84 4	237 161 § 170 § 256 269	9.0 8.0 9.3 9.2 8.5	8.9 7-4 8.7 9.6 8.4	+ 0.1 + 0.6 + 0.6 - 0.4 + 0.1	Fo G2 G3 G3 F8	Ko G5 Go	Go F	0.073 0.058 0.012 0.110 0.021
396 397 398 399 400	12 36.1 12 37.5 12 37.8 13 1.3 13 4.6	84 11 84 8 84 12 84 48 84 10	284 285 286 214 § 296	10.0 10.0 7.8 9.3 9.2	9.8 10.3 7.5 9.4 8.4	+ 0.2 - 0.3 + 0.3 - 0.1 + 0.8	F 1 F 1 Go F 1 G3	Go G5 Ko	F5	0.201 0.018 0.232 0.144 0.037
401 402 403 404 405	13 17.4 13 20.5 13 52.6 14 41.7 15 1.7	84 26 84 25 84 37 84 44 84 20	305 307 317 329 335	9.3 7.8 9.4 9.5 8.2	8.6 7.8 9.7 10.1 7.0	+ 0.7 - 0.3 - 0.6 + 1.2	F3 F4 A3 A0 Ko	G5 F2 Ko	K2	0.030 0.098 0.031 0.029 0.011
406 407 408 409 410	15 29.4 18 47.4 18 54.3 19 1.1 19 21.4	84 13 84 32 84 47 84 25 84 26	345 423 425 426 436	7.8 8.7 9.2 8.9 9.1	7.9 8.8 9.9 9.1 9.2	0.1 0.1 0.7 0.2 0.1	A3 A5 A F1 F4	F0 F0 F8 F5		0.031 0.039 0.022 0.046 0.042
411 412 413 414 415	19 34.1 19 42.7 19 53.8 19 56.9 20 5.5	84 5 84 22 84 31 84 28 84 26	556* 440 445 446 448	9.0 10.5 8.0 8.8 8.8	9.1 10.7 8.2 8.5 8.9	$ \begin{array}{r} - 0.1 \\ - 0.2 \\ - 0.2 \\ + 0.3 \\ - 0.1 \end{array} $	A9 A A0 F5 A2	Fo Ao Go Ao		0.033 0.018 0.031 0.109 0.038
416 417 418 419 420	20 14.0 20 15.0 20 22.8 20 24.5 20 24.5	84 23 84 43 84 47 84 14 84 49	451 452 461 462 463	6.8 9.6 8.7 7.4 7.5	7.1 10.2 7.9 7.3 7.3	$ \begin{array}{c} - & 0.3 \\ - & 0.6 \\ + & 0.8 \\ + & 0.1 \\ + & 0.2 \end{array} $	Ao B9 G F G	A2 Ko Fo F8	A2 A8 F5	0.053 0.032 0.023 0.076 0.082
421 422 423 424 425	20 53.4 21 8.6 21 27.0 21 46.8 21 59.5	84 15 84 53 84 12 84 36 84 21	474 479 608* 495 500	8.3 9.7 8.9 10.0 9.3	8.7 10.0 9.0 10.6 9·3	- 0.4 - 0.3 - 0.1 - 0.6 0.0	A2 F1 F1 A G3	A2 F5		0.040 0.009 0.053 0.021 0.033
426 427 428 429 430	22 2.4 22 13.7 22 20.9 22 27.5 22 50.1	84 43 84 55 84 0 84 33 84 15	501 505 630* 509 513	9-4 8.5 7-3 7-9 7.8	9.8 8.2 7.8 7.3 7.2	$ \begin{array}{r} - 0.4 \\ + 0.3 \\ - 0.5 \\ + 0.6 \\ + 0.6 \end{array} $	A2 G Ao K K	Go Ao Ko Ko	G5	0.040 0.108 0.019 0.031 0.104
431 432 433 434 435	22 53.5 22 53.5 23 9.1 23 18.0 23 34.0	84 50 84 31 84 45 84 9 84 37	517 516 525 649* 533	7.1 8.5 10.4 9.9 8.3	6.0 7.2 10.4 8.7	+ 1.1 + 1.3 0.0 - 0.4	K M A8 A0 A3	К5 Мb А2	K4	0.098 0.053 0.955 0.011 0.039

Sone 85 in B. D.
Zone 83 in B. D.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	a 1900.0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
436 437	h m 23 39.4 22 44.0	84 55 84 31	536 539	8.4 8.3	7.7 8.0	+ 0.7 + 0.3	K G	Ko G5		0. 030
					Zone	85.				
438 439 440	0 56.1 3 21.7 3 38.4	85 55 85 57 85 20	21 56 57	10.5 9.9 9.0	10.0 10.2 8.9	+ 0.5 - 0.3 + 0.1	M Ao Fi			0.008 0.003 0.029
441 442 443 444 445	4 4.7 4 5.1 4 17.5 4 32.1 4 34.4	85 38 85 17 85 14 85 29 85 59	62 63 64 67 68	9.1 6.9 9.1 10.2 10.3	9.3 6.7 8.8 10.5 10.3	$ \begin{array}{c} - 0.2 \\ + 0.2 \\ + 0.3 \\ - 0.3 \\ 0.0 \end{array} $	Aı F9 F5 A6 A3	F8	F6	0.015 0.034 0.034 0.034 0.034
446 447 448 449 450	4 47.9 4 56.3 4 59.8 5 6.0 5 9.9	85 3 85 50 85 37 85 10 85 35	93† 74 75 77 78	9.1 6.7 8.7 9.1 6.5	8.3 6.7 8.3 9.4 6.8	$ \begin{array}{c} + 0.8 \\ 0.0 \\ + 0.4 \\ - 0.3 \\ - 0.3 \end{array} $	K A6 Go B9 Ao	Ко А5 G5 Ао	A5	0.036 0.062 0.115 0.009 0.029
451 452 453 454 455	5 29.9 5 34.6 5 46.9 5 47.6 6 4.8	85 9 85 16 85 17 85 7 85 24	80 81 85 87 91	7.5 8.4 9.3 9.6 9.4	6.2 7.4 9.7 9.2 9.8	$ \begin{array}{r} + 1.3 \\ + 1.0 \\ - 0.4 \\ + 0.4 \\ - 0.4 \end{array} $	Go Ko A8 F 1 A7	К о G5	K5	0.018 0.010 0.164 0.011 0.024
456 457 458 459 460	6 12.3 6 36.1 6 36.3 6 40.1 7 7.5	85 5 85 42 85 1 85 20 85 5	93 98 99 101 107	9.6 9.4 9.1 9.0 9.5	10.3 8.1 9.1 9.2 9.9	$ \begin{array}{c c} - & 0.7 \\ + & 1.3 \\ & 0.0 \\ - & 0.2 \\ - & 0.4 \end{array} $	Ao M F 5 A3 A6	Ma Fo		0.040 0.008 0.022 0.022 0.030
461 462 463 464 465	7 14.0 7 44.2 7 52.4 8 8.7 8 8.8	85 13 85 2 85 59 85 34 85 7	108 118 113 § 124 125	9.7 9.3 8.1 9.4 9.7	10.4 9.8 7.5 8.7 9.4	$ \begin{array}{r} - 0.7 \\ - 0.5 \\ + 0.6 \\ + 0.7 \\ + 0.3 \end{array} $	A4 F1 G3 G A7	G5	Go	0.017 0.075 0.044 0.056 0.012
466 467 468 469 470	8 11.1 8 21.1 8 25.3 8 38.4 8 47.0	85 7 85 3 85 24 85 9 85 57	126 127 128 131 126 §	10.3 10.0 7.7 9.7 9.0	10.6 9.2 7.6 9.6 7.8	$ \begin{array}{r} -0.3 \\ +0.8 \\ +0.1 \\ +0.1 \\ +1.2 \end{array} $	A2 K Go A3 Ko	F2 Ko	F3	0.035 0.222 0.141 0.056 0.040
471 472 473 474 475	8 48.3 8 55.3 9 19.5 9 42.2 10 2.3	85 6 85 59 85 32 85 22 85 56	132 130 § 147 152 146 §	8.5 10.1 9.3 10.5 9.1	8.4 9.7 8.5 11.0 9.4	$ \begin{array}{c} + 0.1 \\ + 0.4 \\ + 0.8 \\ - 0.5 \\ - 0.3 \end{array} $	Fo F6 M A Ao	F0 K5 A0		0.038 0.029 0.022 0.056 0.014
476 477 478 479 480	10 4.0 10 19.9 10 31.1 10 40.7 11 24.4	85 47 85 45 85 16 85 54 85 15	155 160 166 154 § 183	9.3 8.7 9.1 8.5 8.1	8.7 8.5 8.1 8.2 7-3	+ 0.6 + 0.2 + 1.0 + 0.3 + 0.8	G2 F1 Ko F7 G5	G5 Go Ko Go Ko	Gı	0.023 0.037 0.031 0.102 0.038

ZONE 84. — Continued.

† Zone 84 in B. D.
§ Zone 86 in B. D.

39

Zone	85. —	Continued.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	и 190 0.0	ð 1900.0 1	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
481 482 483 484 485	h m 11 27.3 11 38.4 11 45.0 12 6.5 12 20.4	85 11 85 54 85 33 85 38 85 52	184 171§ 191 196 180§	9.5 9.1 8.7 8.6 8.8	9.8 9.2 8.9 8.9 9.1	- 0.3 - 0.1 - 0.2 - 0.3 - 0.3	F 1 F 4 F 2 A 3 A 0	F 5 A 3 A 0		* 0.052 0.019 0.010 0.031 0.016
486 487 488 489 490	12 44.8 12 53.1 13 0.5 13 32.4 13 41.0	85 59 85 15 85 7 85 47 85 16	184§ 209 213 193§ 231	9.2 9.4 9.2 8.0 10.8	9.1 9-3 9.6 8.1 10.2	+ 0.1 + 0.1 - 0.4 - 0.1 + 0.6	G3 F5 F1 F3 F3	F2	F5	0.122 0.050 0.058 0.037 0.010
491 492 • 493 494 495	13 42.6 13 51.5 14 22.0 14 55.9 15 6.3	85 46 85 1 85 1 85 42 85 54	233 234 239 248 221§	9.1 8.8 9.1 8.9 8.0	8.9 7.9 9.3 9.1 7.9	+ 0.2 + 0.9 - 0.2 - 0.2 + 0.1	F7 G6 A5 F0 F3	G Ko F8	G4	0.037 0.036 0.068 0.016 0.055
496 497 498 499 500	15 9.2 15 49.8 18 27.7 19 0.6 19 10.8	85 31 85 33 85 26 85 29 85 28	249 266 304 320 324	8.2 8.8 9.2 8.9 9.5	7.7 8.8 9.3 9.5	+ 0.5 0.0 - 0.4 0.0	K5 F5 F0 A0 A1	Ko G		0.097 0.062 0.025 0.019 0.012
501 502 503 504 505	19 13.7 19 35.7 20 3.1 20 7.3 20 10.8	85 4 85 53 85 36 85 46 85 0	431† 330 337 339 449†	9.5 9.2 8.7 9.6 9.6	9.4 8.8 9.0 9.1 10.4	+ 0.1 + 0.4 - 0.3 + 0.5 - 0.8	F G A5 F5 A0	G5 A5		0.008 0.073 0.040 0.069 0.035
506 507 508 509 510	20 13.6 20 15.6 20 27.2 20 48.0 20 50.1	85 28 85 3 85 57 85 40 85 18	340 455† 347 352 354	9.1 9.0 9.0 9.5 9.0	7.8 9.4 8.6 10.0 7.9	+ 1.3 - 0.4 + 0.4 - 0.5 + 1.1	K Fo G3 G K	K2 G5 Ko	К	0.012 0.032 0.057 0.021 0.061
511 512 513 514 515	20 52.1 20 59.0 21 6.5 21 23.4 21 38.2	85 28 85 11 85 29 85 15 85 52	355 357 359 361 364	9.2 9.2 8.3 9.2 9.4	9.6 9.3 8.7 9.6 9.8	0.4 0.1 0.4 0.4 0.4	A5 F2 F0 A0 F1	G5 F8 Fo		0.057 0.266 0.035 0.012 0.061
516 517 518 519 520	21 50.9 21 55.3 21 55.8 22 2.1 22 21.3	85 59 85 31 85 26 85 23 85 36	367 370 371 376 383	8.7 9.3 9.1 8.8 5.3	9.1 9.6 9.4 8.9 5.4	- 0.4 - 0.3 - 0.3 - 0.1 - 0.1	Ао G Fo F4 А1	A Fo Ao	B8	0.036 0.039 0.034 0.011 0.065
521 522 523 524 525	22 21.7 23 7.3 23 19.2 23 24.4 23 26.3	85 43 85 11 85 31 85 52 85 27	384 523† 398 399 400	7.6 8.3 9.4 6.7 8.2	6.7 8.8 8.7 6.8 7.7	+ 0.9 - 0.5 + 0.7 - 0.1 + 0.5	K Fo Ko A8] Go] G4	Ko F K2 Fo G5	Ko A6	0.045 0.054 0.042 0.033 0.017
526 527	23 30.4 23 50.9	85 38 85 21	403 406	7.0 8.5	7.3 9.0	0.3 0.5	A2 Ao	A5 Ao		0.02 I 0.020

† Zone 84 in B. D. § Zone 86 in B. D.

ZONE 86.

			B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	α 1900.0	δ 1900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
528 529 530	h m o 37.1 o 49.2 o 59.1	86 24 86 47 86 37	9 14 17	8.5 9.2 7.1	8.8 8.8 6.3	- 0.3 + 0.4 + 0.8	A4 G G8	A3 G5 Ko	G5	" 0.025 0.315 0.063
531 532 533 534 535	1 2.1 1 40.3 1 41.8 2 3.6 2 25.3	86 27 86 26 86 29 86 58 86 33	18 25 27 31 38	9.9 8.1 10.3 9.4 9.0	9.7 8.4 9.5 10.0 9.3	+ 0.2 0.3 + 0.8 0.6 0.3	K F4 A7 B9 A5	F5 A5		0.019 0.039 0.008 0.029 0.026
536 537 538 539 540	2 32.2 2 46.6 2 53.9 3 4.6 3 26.4	86 37 86 42 86 49 86 3 86 59	39 42 45 53* 49	7.9 10.0 9.1 8.9 9.2	7·9 10.3 9.6 9.1 9·7	0.0 - 0.3 - 0.5 - 0.2 - 0.5	Fo A3 A4 Fo Ao	Fo		0.044 0.011 0.021 0.043 0'002
541 542 543 544 545	3 36.5 3 52.6 4 31.4 4 34.8 4 35.5	86 25 86 40 86 9 86 18 86 0	52 54 62 64 69*	9·4 8.8 10.0 9.0 9.2	9.9 9.1 10.0 9.6 9.8	- 0.5 - 0.3 0.0 - 0.6 - 0.6	A I F8 A2 F1 A2 A0	Fo		0.012 0.021 0.018 0.027 0.016
546 547 548 549 550	4 38.0 4 46.3 4 50.8 5 47-3 5 48.6	86 43 86 19 86 44 86 26 86 20	65 66 67 77 78	8.8 7.7 9.1 9.5 10.3	8.6 8.3 9.2 10.6	+ 0.2 0.6 0.1 + 0.6 0.3	G3 B9 F1 Ko M	G5 B9 G		0.034 0.018 0.026 0.026 0.090
551 552 553 554 555	6 8.1 6 9.9 6 23.0 6 35.0 7 11.5	86 46 86 48 86 3 86 28 86 35	79 80 86 91 103	7.6 10.3 9.1 9.2 8.2	6.8 10.5 9.2 9.7 8.1	+ 0.8 - 0.2 - 0.1 - 0.5 + 0.1	G7 Ao F3 Ao Go	G5 F8 A Go	Κı	0.116 0.020 0.025 0.023 0.174
556 557 558 559 560	7 40.2 7 46.1 7 46.9 8 8.6 8 19.8	86 37 86 44 86 40 86 56 86 8	107 109 110 63 § 120	9.4 10.3 9.9 10.1 9.2	9.5 10.0 8.5 9.9 8.6	$ \begin{array}{r} - 0.1 \\ + 0.3 \\ + 1.4 \\ + 0.2 \\ + 0.6 \\ \end{array} $	F5 F1 K F G5	Ma		0.047 0.038 0.030 0.017 0.021
561 562 563 564 565	8 20.0 8 41.9 9 58.2 10 18.8 10 42.7	86 12 86 49 86 19 86 52 86 16	119 124 143 89\$ 155	9.6 10.5 8.3 9.9 10.6	9.8 10.3 8.7 9.9 11.0	- 0.2 + 0.2 - 0.4 0.0 - 0.4	F5 A0 A2 A6 A2	A ₃		0.035 0.046 0.023 0.035 0.011
566 567 568 569 570	10 53.9 10 57.0 11 2.5 11 13.0 11 17.3	86 13 86 5 86 11 86 36 86 11	157 159 161 163 165	10.4 8.4 7.4 9.3 9.3	9.5 8.7 7.4 9.3 10.0	+ 0.9 - 0.3 0.0 0.0 - 0.7	Go A3 A3 F A2	A3 A2	A5	0.036 0.011 0.040 0.072 0.012
571 572 573 574 575	11 25.1 11 28.3 11 40.1 11 47.4 11 59.7	86 4 86 10 86 5 86 47 86 8	169 170 172 99\$ 176	9·3 7·5 8.7 8.7 6.7	9.6 7•5 8.2 8.3 6.7	- 0.3 0.0 + 0.5 + 0.4 0.0	F A7 G3 G0 F3	F o Ko G 5' F 5	A8 F 5	0.033 0.059 0.022 0.344 0.104

* Zone 85 in B. D. § Zone 87 in B. D.

ZONE 86. — Continued.

No. α 1900.0				B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
αΙ	900.0	ð iç	900.0	No.	magn. Greenwich.	Müller and Kron.	Index.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
h 12 12 12 13 13	m 6.9 13.9 34.6 5.8 9.7	° 86 86 86 86 86	, 16 59 17 46 15	177 107\$ 182 117 \$ 188	8.8 6.6 7.3 9.3 10.0	8.9 6.5 7.4 9.6 10.2	$ \begin{array}{r} - 0.1 \\ + 0.1 \\ - 0.1 \\ - 0.3 \\ - 0.2 \end{array} $	A5 F1 A2 F0 A	F2 Fo	Fo A3	" 0.011 0.221 0.021 0.055 0.033
14 14 15 16 16	30.0 49.6 9.1 20.2 34.8	86 86 86 86 86	3 22 17 3 26	211 217 222 242 244	9.0 7.8 9.3 9.2 8.6	9.1 7.3 9.3 var. 8.7–9.8	- 0.1 + 0.5 0.0	F1 Ko Go K B9	Ko Ao	G3	0.045 0.009 0.097 0.046 0.034
17 18 18 18 18 18	12.1 4 .5 13.2 40.7 47.7	86 86 86 86 86	13 37 48 9 35	256 269 274 277 282	9.0 4.5 11.0 9.1 8.0	8.4 4.7 11.1 9.3 6.6	+ 0.6 - 0.2 - 0.1 - 0.2 + 1.4	Ko Bg Ao Ao Ko	G5 Ao Ma	B9 M	0.059 0.058 0.031 0.029 0.021
19 19 21 21 21	20.5 40.9 19.6 46.4 58.0	86 86 86 86 86	3 5 44 37 33	290 297 319 324 374*	9.2 9.2 7.3 8.3 9.9	9•3 9•4 7•7 8.5 10•4	- 0.1 - 0.2 - 0.4 - 0.2 - 0.5	Go A4 Ao A2 B9	A3 A2	A2	0.045 0.017 0.019 0.033 0.010
22 22 22 22 22 23	24.4 37.8 42.3 43.3 12.6	86 86 86 86 86	4 46 8 15	386* 389* 335 390* 396*	10.2 9.5 7.9 9.1 9.9	9.4 9.4 8.3 8.6	+ 0.8 + 0.1 - 0.4 + 0.5	A G8 A0 G5 A	Ao G5		0.010 0.024 0.008 0.034 0.021
23 23 23 23 23	27.5 27.8 54.8 57.3	86 86 86 86	0 45 9 29	401* 344 409* 347	7•4 5.8 6.7 7.8	7.4 5.8 7.0 7.9	0.0 0.0 0.3 0.1	F8 F0 A0 F8	F5 F0 A0 F0	A4	0.043 0.080 0.046 0.019
						Zone	87.				
0	0.3	87	20	220	9.4	9.0	+ 0.4	F	G5		0.025
0 0 0 0	7.5 27.1 38.9 42.8 5 9.6	87 87 87 87 87 87	51 15 17 21 44	1 7† 5 7 9	8.9 9.0 9.4 9.8 8.9	9.3 9.0 9.4 10.1 9.0	- 0.4 0.0 - 0.3 - 0.1	A2 F2 F A5 F8	A F5		0.013 0.047 0.031 0.011 0.017
I 2 2 2 3	21.4 49.9 50.3 58.5 33.3	87 87 87 87 87	23 1 8 33 23	13 44† 43† 26 29	9.9 9.2 9.1 8.9 10.2	9.8 9·3 9·4 9.0 10.4	+ 0.1 - 0.1 - 0.3 - 0.1 - 0.2	F F8 A3 F B9			0.068 0.029 0.055 0.050 0.055
3 4 5 5 5	53.7 35.6 9.1 30.9 45.6	87 87 87 87 87 87	16 42 25 0 20	31 35 38 75† 41	9.8 9.2 9.9 9.3 9.3	9.8 9.5 10.1 9.8 8.2	0.0 - 0.3 - 0.2 - 0.5 + 0.1	Fo Fo A5 M	Ко		0.013 0.026 0.011 0.041 0.023
	h 12 12 13 13 14 14 15 16 16 17 18 18 18 18 19 19 21 21 21 22 22 23 23 23 23 23 23 23 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h m o 12 6.9 86 12 13.9 86 13 9.7 86 13 5.8 86 13 9.7 86 14 30.0 86 14 30.0 86 14 30.0 86 14 49.6 86 15 9.1 86 16 20.2 86 16 20.2 86 18 4.5 86 18 4.5 86 19 20.5 86 21 46.4 86 21 58.0 86 22 24.4 86 23 27.5 86 23 27.8 86 23 27.8 86 23 27.8 86 23 27.8 86 23 27.8 86 23 57.3 86 23 57.3 86 23	h m o i 12 6.9 86 16 12 13.9 86 59 12 34.6 86 17 13 5.8 86 46 13 9.7 86 15 14 30.0 86 3 14 49.6 86 22 15 9.1 86 17 16 24.2 86 31 16 34.8 86 26 17 12.1 86 13 18 4.5 86 37 18 13.2 86 48 18 40.7 86 35 19 20.5 86 35 19 20.5 86 35 19 40.9 86 44 21 19.6 85 37 21 19.6 86 11 22 24.4 86 </td <td>h m o i 12 6.9 86 16 177 12 13.9 86 59 107 12 13.9 86 59 107 12 34.6 86 17 182 13 9.7 86 15 188 14 30.0 86 3 211 14 49.6 86 22 217 15 9.1 86 17 222 16 34.8 86 26 244 17 12.1 86 13 242 16 34.8 86 26 277 18 4.5 86 37 269 18 13.2 86 44 297 21 19.6 86 35 282 19 20.5 86 35 324</td> <td>a 1900.0 δ 1900.0 B. D. No. magn. Greenwich. h m o i i freenwich. 12 6.9 86 16 177 8.8 12 34.6 86 17 182 7.3 13 5.8 86 46 1778 6.66 14 30.0 86 3 211 9.0 14 49.6 86 22 277 7.8 15 9.1 86 17 222 9.3 16 20.2 86 3 242 9.2 16 34.8 86 26 244 8.6 17 12.1 86 13 256 9.0 18 4.5 86 37 269 4.5 18 3.2 86 48 274 1.0 18 40.7 86 35 290 9.2 21 19.6 85 319 7.3 21 40.4 86</td> <td>a 1900.0 δ 1900.0 B. D. magn. Greenwich. Muller and Kron. h m o i<!--</td--><td>a 1900.0 ð 1900.0 No. magn. Greenwich, No. Muller and Kron, Colour Index, h m 0 ' Greenwich, S and Kron, Index, h m 0 ' Iff S S Greenwich, and Kron, Index, h m 0 ' Iff S S G Greenwich, and Kron, Index, 12 34.6 86 17 IS2 7.3 7.4 - 0.1 13 5.8 86 46 117 S 7.3 7.4 - 0.1 13 9.7 86 15 188 10.0 10.2 - 0.2 14 49.6 86 22 217 7.8 7.3 - 0.1 15 9.1 86 17 222 9.3 9.3 0.0 16 34.8 86 20 29.4 -0.2 1.3.2 86 4.5 3.5 2.2 9.4 -0.1 -0.1 -0.1 -0.1 -0.1 <t< td=""><td>a 1900.0 δ 1900.0 δ 1900.0 δ 1900.0 δ σ σ</td><td>a 1900.0 δ 1900.0 B. D. Interpret magn. magn. Greenwich. Müller and Kron. Colour Index. Harvard author. h m o ' ' 88 6.6 - - A Harvard circular 180. h m o ' ' 8.8 8.9 - - 1 A F F F P 12 34.0 86 15 188 10.0 10.2 - 0.1 A F F F P</br></br></td><td>a 1900.0 δ 1900.0 B. D. No. Int. pion Greenwich. Multication and Kron. Colour Index. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 178 F2 100 F0 102 Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 100 F2 102 F2 100 F0 A: A: A: Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 F2 100 F2 A: F2 A: F0 A: A: A: Actinometry. i 30.0 86 3 211 222 9.3 9.2 9.1 9.1 - 0.1 1.5 F4 Ko Ko Ko G3 G3 B9 Ao i 31.8 80 20 24 9.4 9.2 -0.4 9.4 Ko Ma M i 10.2 2.2 9.3 9.3 -0.1 Actinometry. Ao Ao Ao i 10.2.5 86.3 132 129</td></t<></td></td>	h m o i 12 6.9 86 16 177 12 13.9 86 59 107 12 13.9 86 59 107 12 34.6 86 17 182 13 9.7 86 15 188 14 30.0 86 3 211 14 49.6 86 22 217 15 9.1 86 17 222 16 34.8 86 26 244 17 12.1 86 13 242 16 34.8 86 26 277 18 4.5 86 37 269 18 13.2 86 44 297 21 19.6 86 35 282 19 20.5 86 35 324	a 1900.0 δ 1900.0 B. D. No. magn. Greenwich. h m o i i freenwich. 12 6.9 86 16 177 8.8 12 34.6 86 17 182 7.3 13 5.8 86 46 1778 6.66 14 30.0 86 3 211 9.0 14 49.6 86 22 277 7.8 15 9.1 86 17 222 9.3 16 20.2 86 3 242 9.2 16 34.8 86 26 244 8.6 17 12.1 86 13 256 9.0 18 4.5 86 37 269 4.5 18 3.2 86 48 274 1.0 18 40.7 86 35 290 9.2 21 19.6 85 319 7.3 21 40.4 86	a 1900.0 δ 1900.0 B. D. magn. Greenwich. Muller and Kron. h m o i </td <td>a 1900.0 ð 1900.0 No. magn. Greenwich, No. Muller and Kron, Colour Index, h m 0 ' Greenwich, S and Kron, Index, h m 0 ' Iff S S Greenwich, and Kron, Index, h m 0 ' Iff S S G Greenwich, and Kron, Index, 12 34.6 86 17 IS2 7.3 7.4 - 0.1 13 5.8 86 46 117 S 7.3 7.4 - 0.1 13 9.7 86 15 188 10.0 10.2 - 0.2 14 49.6 86 22 217 7.8 7.3 - 0.1 15 9.1 86 17 222 9.3 9.3 0.0 16 34.8 86 20 29.4 -0.2 1.3.2 86 4.5 3.5 2.2 9.4 -0.1 -0.1 -0.1 -0.1 -0.1 <t< td=""><td>a 1900.0 δ 1900.0 δ 1900.0 δ 1900.0 δ σ σ</td><td>a 1900.0 δ 1900.0 B. D. Interpret magn. magn. Greenwich. Müller and Kron. Colour Index. Harvard author. h m o ' ' 88 6.6 - - A Harvard circular 180. h m o ' ' 8.8 8.9 - - 1 A F F F P 12 34.0 86 15 188 10.0 10.2 - 0.1 A F F F P</br></br></td><td>a 1900.0 δ 1900.0 B. D. No. Int. pion Greenwich. Multication and Kron. Colour Index. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 178 F2 100 F0 102 Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 100 F2 102 F2 100 F0 A: A: A: Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 F2 100 F2 A: F2 A: F0 A: A: A: Actinometry. i 30.0 86 3 211 222 9.3 9.2 9.1 9.1 - 0.1 1.5 F4 Ko Ko Ko G3 G3 B9 Ao i 31.8 80 20 24 9.4 9.2 -0.4 9.4 Ko Ma M i 10.2 2.2 9.3 9.3 -0.1 Actinometry. Ao Ao Ao i 10.2.5 86.3 132 129</td></t<></td>	a 1900.0 ð 1900.0 No. magn. Greenwich, No. Muller and Kron, Colour Index, h m 0 ' Greenwich, S and Kron, Index, h m 0 ' Iff S S Greenwich, and Kron, Index, h m 0 ' Iff S S G Greenwich, and Kron, Index, 12 34.6 86 17 IS2 7.3 7.4 - 0.1 13 5.8 86 46 117 S 7.3 7.4 - 0.1 13 9.7 86 15 188 10.0 10.2 - 0.2 14 49.6 86 22 217 7.8 7.3 - 0.1 15 9.1 86 17 222 9.3 9.3 0.0 16 34.8 86 20 29.4 -0.2 1.3.2 86 4.5 3.5 2.2 9.4 -0.1 -0.1 -0.1 -0.1 -0.1 <t< td=""><td>a 1900.0 δ 1900.0 δ 1900.0 δ 1900.0 δ σ σ</td><td>a 1900.0 δ 1900.0 B. D. Interpret magn. magn. Greenwich. Müller and Kron. Colour Index. Harvard author. h m o ' ' 88 6.6 - - A Harvard circular 180. h m o ' ' 8.8 8.9 - - 1 A F F F P 12 34.0 86 15 188 10.0 10.2 - 0.1 A F F F P</br></br></td><td>a 1900.0 δ 1900.0 B. D. No. Int. pion Greenwich. Multication and Kron. Colour Index. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 178 F2 100 F0 102 Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 100 F2 102 F2 100 F0 A: A: A: Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 F2 100 F2 A: F2 A: F0 A: A: A: Actinometry. i 30.0 86 3 211 222 9.3 9.2 9.1 9.1 - 0.1 1.5 F4 Ko Ko Ko G3 G3 B9 Ao i 31.8 80 20 24 9.4 9.2 -0.4 9.4 Ko Ma M i 10.2 2.2 9.3 9.3 -0.1 Actinometry. Ao Ao Ao i 10.2.5 86.3 132 129</td></t<>	a 1900.0 δ 1900.0 δ 1900.0 δ 1900.0 δ σ	a 1900.0 δ 1900.0 B. D. Interpret magn. magn. 	a 1900.0 δ 1900.0 B. D. No. Int. pion Greenwich. Multication and Kron. Colour Index. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 178 F2 100 F0 102 Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 A: 100 F2 102 F2 100 F0 A: A: A: Actinometry. h m 0 i 177 100 8.8 8.9 100 - 0.1 102 F2 100 F2 A: F2 A: F0 A: A: A: Actinometry. i 30.0 86 3 211 222 9.3 9.2 9.1 9.1 - 0.1 1.5 F4 Ko Ko Ko G3 G3 B9 Ao i 31.8 80 20 24 9.4 9.2 -0.4 9.4 Ko Ma M i 10.2 2.2 9.3 9.3 -0.1 Actinometry. Ao Ao Ao i 10.2.5 86.3 132 129

.

§ Zone 87 in B. D.
* Zone 85 in B. D.
† Zone 86 in B. D.

.

TABLES.

ZONE 87. — Continued.

				B. D.	Int. phot.	Vis. magn,	Colour		Spectrum	n	Proper
No.	a 1900.0	1 6	900.0	No.	magn. Greenwich.	Muller and Kron.	Index.	author.	Harvərd circular 180	Yerkes Actinometry.	Motion Greenwich.
621 621 623 624 625	h m 6 24.3 6 35.5 6 53.7 7 16.6 8 26.2	87 87 87	, 32 12 57 15	45 46 51 39\$ 68	9.2 9.0 6.6 9.1 8.8	9·4 8.5 5·2 9·4 8.8	- 0.2 + 0.5 + 1.4 - 0.3 0.0	A G K5 A0 F	G5 Ma Fo Go	K 5	" 0.016 0.048 0.063 0.074 0.040
626 627 628 629 630	8 27.0 8 27.2 9 28.0 9 38.3 9 40.4	87 87 87 87	1 46 34 45 37	69 67 79 81 82	9.5 9.3 9.2 9.5 9.2	9.2 9.7 8.4 9.4	+ 0.3 0.4 + 0.8 0.2	F A5 F8 K5 F8	Ko		0.020 0.032 0.037 0.135 0.052
631 632 633 634 635	$ \begin{array}{ccccc} 9 & 44.0 \\ 10 & 4.0 \\ 11 & 54.3 \\ 11 & 54.6 \\ 12 & 8.1 \\ 12 & 16.4 \end{array} $	9 87 87 87 87 87	3 46 33 33 29 6	83 85 100 101 104 108	8.6 9.0 9.4 8.1 8.9 9.4	7•7 8.3 9.8 8.3 8.2 9•9	+ 0.9 + 0.7 - 0.4 - 0.2 + 0.7 - 0.5	Go Go AI F8 F0	G5 Ko A2		0.054 0.034 0.027 0.032 0.023 0.023
636 637 638 639 640	12 42.1 12 58.1 13 25.1 13 34.8 13 46.9	87 87 87 87	2 12 5 1 40	113 115 122 124 127	9.3 8.8 8.5 9.5 10.0	9.7 8.8 8.7 9.6 10.2	- 0.4 0.0 - 0.2 - 0.1 - 0.2	F 3 F 3 A8 Go] A2 A2	F8 F2		0.017 0.077 0.022 0.010 0.019
641 642 643 644 645	13 53.6 14 18.1 15 9.3 15 27.2 16 5.5	87 87 87	48 52 37 23 45	80§ 86§ 143 147 151	8.9 8.7 8.1 8.3 9.2	9·3 9·3 7.1 8.4 9·3	0.4 0.6 + 1.0 0.1 0.1	A2 B9 K0 F3 F5	Ao B9 Ko F8 F8	K5	0.012 0.026 0.029 0.050 0.029
646 647 648 649 650	18 4.4 19 14.5 19 15.7 19 53.8 20 25.1	87 87 87	25 10 41 53 38	169 180 181 185 187	8.3 8.3 9.3 9.0	8.5 8.8 8.7 9.7 8.2	- 0.2 - 0.5 - 0.3 - 0.4 + 0.8	A5 Go] A0 A0 A4 K	F0 A5 A3 K2		0.022 0.029 0.006 0.015 0.024
651 652 653 654 655	21 16.4 21 49.3 21 59.3 22 22.0 22 34.2	87 87 87	8 58 19 - 5 34	318† 199 201 332† 205	8.6 9.5 8.5 9.1 7.3	8.5 10.0 8.5 9.4 7.4	+ 0.1 - 0.5 0.0 - 0.3 - 0.1	F Ao] F8] F6 A6 A	F2 F8 F2 A2	A2	0.046 0.031 0.036 0.041 0.042
656	23 42.9	87	47	217	8.8	9.1	- 0.3	A3	Ao		0.023
	ZONE 88.										
657 658 659 660	0 16.1 0 59.5 1 17.4 1 18.1	88 88	53 27 34 3	2 5 6 12*	8.8 9.4 10.0 8.9	8.2 9.1 10.0 7.9	+ 0.6 + 0.3 0.0 + 1.0	Go G3 A M	Ko Ko		0.008 0.048 0.034 0.039
661 662 663 664 665	I 49.7 I 56.1 2 I4.2 2 I7.4 2 42.3	88 88 88	0 12 42 15 34	15* 16* 9 11 13	8.1 9.0 8.2 8.8 8.8 8.8	8.3 9.1 8.2 8.8 9.1	- 0.2 - 0.1 0.0 0.0 - 0.3	Fo F8 Go F8 A8	A3 Go Fo Go A		0.050 0.063 0.060 0.176 0.038

† Zonc 86 in B. D.
§ Zone 88 in B. D.
* Zone 87 in B. D.

-

ZONE 88. — Continued.

					B. D.	Int. phot.	Vis. magn.	Colour		Spectru	m	Proper
No.	No. a 1900.0		8 1900.0		No.	magn. Greenwich.	Müller and Kron.	lndex.	author.	Harvard circular 180.	Yerkes Actinometry.	Motion Greenwich.
666 667 668 669 670	h 2 3 4 5 6	m 52.0 9.3 4.9 47.1 9.0	° 88 88 88 88 88 88	, 9 27 2 44 36	23* 16 33* 29 33	9.2 9.8 8.6 9.6 10.0	8,6 9,8 8,7 9,3 10,1	+ 0.6 0.0 0.1 + 0.3 - 0.1	G8 F5 G0 G5 F	Ko F2		" 0.046 0.107 0.031 0.032 0.007
671 672 673 674 675	6 7 8 9 10	17.7 58.1 7.7 27.0 19.4	88 88 88 88 88	20 56 41 13 23	35 13† 43 55 60	9.3 7.1 9.7 9.9 8.9	9.5 7.3 9.8 10.1 9.0	- 0.2 - 0.2 - 0.1 - 0.2 - 0.1	F A F2 A8 F8	Ao F8	A ₃	0.0 31 0.022 0.047 0.031 0.038
676 677 678 679 680	11 12 12 13 13	4.2 15.3 46.0 4.5 26.8	88 88 88 88 88	11 20 31 11 4	64 72 75 76 77	7.3 9.4 9.3 8.8 8.7	7·7 9.8 9.2 7.6 8.7	- 0.4 - 0.4 + 0.1 + 1.2 0.0	B9 A8 G3 K5 F8	B8 K2 F 2	B9	0.012 0.033 0.043 0.022 0.035
681 682 683 684 685	16 17 17 17 17 17	21.8 6.1 31.7 51.6 53.9	88 88 88 88 88 88	27 10 41 44 15	96 100 101 105 104	9.8 9.2 9.2 8.9 8.3	10.0 9.1 9.7 8.5 8.3	- 0.2 + 0.1 - 0.5 + 0.4 0.0	A5 F F0 F5 A	Ko F5		0.012 0.038 0.003 0.032 0.021
686 687 688 689 690	18 19 19 19 19	48.6 22.5 43.3 54.1 59.0	88 88 88 88 88 88	38 59 41 34 50	110 112 114 115 117	9.1 7.8 9.0 9.0 8.8	9.4 6.5 8.2 9.4 var. R. Cephei	$ \begin{array}{r} - 0.3 \\ + 1.3 \\ + 0.8 \\ - 0.4 \end{array} $	A8 M K A2 F8	F 5 Mb Ko A2 G5	М	0.022 0.013 0.007 0.023 0.146
691 692 693 694	21 22 22 23	57.0 12.1 30.9 44.2	88 88 88 88	23 58 44 17	130 131 133 139	9.3 8.8 9.4 9.4	9.4 9.1	- 0.1 - 0.3	F A1 A4 F1	F A5		0.021 0.015 0.016 0.014
							Zone	89.				
695	2	31.6	89	6	IOŞ	9.7	9•4	+ 0.3	Go			0.024
696 697 698 699 700	3 3 11 11 12	0.0 18.9 0.4 35.0 42.2	89 89 89 89 89 89	12 41 18 29 14	6 3 17 18 21	10.1 9.0 9.5 9.4 9.4	9.1 9.6 9.8 9.5	- 0.I - 0.I - 0.4 - 0.I	A5 F2 A2 F	A5 F		0.037 0.031 0.086 0.016 0.017
701 702	13 23	51.5 11.0	89 89	29 16	25 38	9.6 9.6	10.0 10.0	- 0.4 - 0.4	Ao Ao	1		0.024 0.001

1

* Zone 87 in B. D. † Zone 89 in B. D. § Zone 88 in B. D.

CENTRE OF THE PLATE + 35° 14^h 30^m.

N		8 - ·	Bonner	Durchmus	sterung	Spectrum
No.	a 1900.0	δ 1900.0	No.	Zone.	magn.	author.
I 2 3 4 5	h m s 14 12 46 14 13 30 14 13 51 14 14 9 14 16 41	o , 35 58.1 33 43.1 38 7.3 34 40.1 33 45.1	2468 2436 2541 2515 2447	36 33 38 34 33	4.8 7.3 7.5 8.7 8.2	G Fo A5 K Fo
6	14 16 42	36 51.0	2519	37	7.0	AI
7	14 18 2	36 5.4	2478	36	8.0	Go
8	14 18 23	32 53.7	2453	33	9.2	G
9	14 19 10	34 0.9	2525	34	8.6	Go
10	14 19 16	37 18.3	2527	37	8.1	Fo
11	I4 I9 20	37 39.6	2528	37	7.2	F6
12	I4 20 I5	38 53.0	2762	39	8.6	Ko
13	I4 23 3I	33 25.3	2466	33	8.2	A2
14	I4 23 44	35 11.1	2561	35	8.0	F3
15	I4 23 48	36 1.3	2493	36	7.5	G3
16	14 24 10	36 38.8	2495	36	6.5	G5
17	14 25 33	32 14.0	2482	32	6.5	B9
18	14 26 4	37 36.5	2540	37	7.5	F6
19	14 28 3	38 45.4	2565	38	2.8	F0
20	14 28 10	33 3 ^{8.9}	2471	33	8.5	A0
21 22 23 24 25	14 29 0 14 29 17 14 29 31 14 29 55 14 30 30	38 48.9 37 23.8 36 1.4 32 58.6 38 26.4	2776 2545 2505 2474 2570	39 37 36 33 38	9.0 6.8 7.3 6.8 7.5	Fo Go Go A3
26	14 30 35	37 3.8	2551	37	6.2	Ko
27	14 32 55	34 9.5	2543	34	9.0	G
28	14 33 4	36 22.1	2509	36	6.5	B9
29	14 35 4	32 57.8	2482	33	8.3	G5
30	14 35 22	36 56.2	2559	37	8.1	G0
31	14 36 35	34 42.5	2551	34	8.5	A5
32	14 37 0	38 34.3	2579	38	7.2	F8
33	14 37 38	35 40.1	2597	35	8.2	G0
34	14 37 56	32 20.7	2505	32	8.4	F5
35	14 38 37	37 10.4	2568	37	6.8	A4
36	14 40 35	32 33.3	2511	32	7.9	G
37	14 41 3	33 13.1	2489	33	6.6	M
38	14 42 18	32 56.5	2491	33	8.2	F7
39	14 43 20	35 59.3	2530	36	7.5	B9
40	14 43 48	36 4.6	2531	36	7.5	F7
4 I	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36 27.7	2533	36	8.4	Go
42		36 1.1	2535	36	8.4	G
43		38 12.9	2593	38	6.2	Fo
44		35 37.1	2614	35	8.3	F5
45		37 0.7	2578	37	8.4	A1
46		37 40.6	2580	37	5.7	Go

ø

.

STELLINGEN.

I.

De sterren met kleine E. B. (althans die van het II^e type) zijn, ceteris paribus, rooder dan die met groote E. B.

Dit effect moet waarschijnlijk meer worden toegeschreven aan een invloed van de absolute magnitude, dan aan selectieve verstrooiing van 't licht in de ruimte.

II.

Het bedrag van dit effect neemt toe voor de spectraalklasse in de volgorde A, F, G, K, M.

III.

Dr. MOGENDORFF's bewering dat de sterren voor meer dan de helft tot type I behooren, geldt alleen voor de heldere. Van de 7^e tot de 9^e grootte neemt percentsgewijze 't aantal sterren van type II sterk toe.

Zie: "Kosmografie" door Dr. E. E. Mogendorff.

IV.

De voorstelling, die men zich vormt van de verdeeling der sterren in de wereldruimte en de daaruit voortvloeiende z.g.n. structuur van het sterrenstelsel is moeilijk vereenigbaar met de opvatting als zouden de sterstroomen zijn te verklaren uit twee van elkaar onafhankelijke sterrenwolken, die thans bezig zijn elkaar te doordringen.

Zie: Rede Prof. J. C. Kapteyn op 't Genees- en Natuurkundig Congres 1911.

V.

Het verschijnsel van de twee sterstroomen kan niet verklaard worden uit de excentriciteit van de zon t. o. v. 't zwaartepunt van het sterrenstelsel.

S. Oppenheim, Ueber die Eigenbewegung der Fixsterne (IV Mitteilung).

De methode, volgens welke G. J. BURNS de helderheid van den hemel bepaalt, is verwerpelijk.

Astrophysical Journal, Volume XVI blz. 166.

VII.

In het "Handboek der Kosmografie" van Dr. P. H. SCHOUTE wordt 't verschil in middelbare tijd tusschen 2 plaatsen omgezet in sterrentijd, teneinde het lengteverschil tusschen beide plaatsen te vinden.

Dit is onjuist.

VIII.

De wijze waarop Dr. P. MOLENBROEK de inhoud van een kegelvormige bolsector bepaalt, is uit streng wetenschappelijk oogpunt af te keuren. Zie: Dr. P. Molenbroek, Leerboek der Meetkunde, 2e deel.

IX.

De constructie van een drievlakshoek uit drie zijner elementen behoort meer thuis in een leerboek over stereometrie dan in een over beschrijvende meetkunde.

Х

"Het aantal der eenheden van een hoeveelheid is onafhankelijk van de plaats der eenheden"

Het is niet mogelijk voor deze grondeigenschap der Rekenkunde een bewijs te leveren.

XI.

Met 't oog op de groote vorderingen die de Wis- en Natuurkundige wetenschappen den laatsten tijd gemaakt hebben, is een algeheele reorganisatie van 't Wiskundeonderwijs aan de Gymnasia en de Hoogere Burgerscholen hoog noodig

XII.

De zoogenaamde "afstand van duidelijk zien" heeft noch physische noch physiologische beteekenis; bij de behandeling van loupe en microscoop is dit begrip overbodig.

XIII.

VAIHINGER's bewering dat de methoden der theoretische natuurkunde slechts fictieve methoden zijn, is niet in overeenstemming met de wijze, waarop hij zelf 't verschil tusschen Hypothese en Fictie definieert.

Hans Vaihinger: Die Philosophie des Alsob.

XIV.

Het Dierkundeboek van Dr. A. SCHIERBEEK en D. VALKEMA en de daarbij behoorende atlas zijn voor de lagere klassen der scholen, waarvoor het boek bestemd is, uit paedagogisch oogpunt niet aan te bevelen.

XV.

Evenals op de middelbare scholen in Frankrijk, behoort ook ten onzent de zedenleer in de hoogste klassen onderwezen te worden.

